This problem is describing the state two gases have when separated and together as shown on the attached picture. First of all, diagram 1 shows how they are separated in two containers with apparently equal volumes, whereas diagram 2 shows the removal of the barrier so that they get mixed together.
In this case, we can analyze that each gas has its own pressure and due to the removal of the barrier, both pressure and volume undergo a change. Thus, we can infer that the final volume is doubled with respected to the initial one for each gas, causing the pressure of each gas to be halved and the total pressure the half of the added ones, in agreement to the Boyle's law (inversely proportional relationship between pressure and temperature).
Therefore, the correct choice is:
C. The partial pressure of each gas in the mixture is half its initial pressure; the final total pressure is half the sum of the initial pressures of the two gases.
Learn more:
The answer is; A
By using a spring and determining the tension applied on the string by the car, it is possible to deduce the force. Determine the spring's initial tension as well as spring rate and working loads;
Rate = (Load – Initial Tension) ÷ Travel
k = (L – IT) ÷ T
From the reaction between Cu and HNO₃, the formed gas is NO₂ instead of NO₃. Hence the correct balanced equation would be,
Cu(s) + 4HNO₃(aq) → Cu(NO₃)₂(aq) + 2NO₂(g) + 2H₂O<span>(l)
Here, Cu goes to </span>Cu(NO₃)₂ by changing its oxidation number from 0 to +2 while NO₃⁻ goes to NO₂ by reducing its oxidation state from +5 to +4 . Hence Cu is oxidized by HNO₃ in the reaction.
Spore formation is a form of asexual reproduction used by mushrooms and molds.
During budding, the offspring grows from the body of the parent.
Fragmentation is a form of asexual reproduction that must be followed by regeneration.
Explanation:
Asexual reproduction is the type of reproduction where the gamete formation and fusion have no relevance or existence. It functions on the process of somatic cell division via mitosis and the offsprings are identical to their parents.
The spore formation occurs in fungi through sporangia, bursting open to shed spores, forming into a new young ones. Budding occurs out as an outgrowth of the parent and attains maturity and separates. Fragmentation is the process where the parents fall apart into pieces and regeneration follows.
<h3>
Answer:</h3>
382.63 K
<h3>
Explanation:</h3>
We are given;
- Volume of Iodine as 71.4 mL
- Mass of Iodine as 0.276 g
- Pressure of Iodine as 0.478 atm
We are required to calculate the temperature of Iodine
- We are going to use the ideal gas equation;
- According to the ideal gas equation; PV = nRT, where R is the ideal gas constant, 0.082057 L.atm/mol.K.
T = PV ÷ nR
But, n, the number of moles = Mass ÷ Molar mass
Molar mass of iodine = 253.8089 g/mol
Thus, n = 0.276 g ÷ 253.8089 g/mol
= 0.001087 moles
Therefore;
T = (0.478 atm × 0.0714 L) ÷ (0.001087 moles × 0.082057)
= 382.63 K
Thus, the temperature of Iodine in Kelvin is 382.63 K