Answer:
74mL
Explanation:
Given parameters:
Molar mass of citric acid = 192g/mol
Molar mass of baking soda = 84g/mol
Concentration of citric acid = 0.8M
Mass of baking powder = 15g
Unknown parameters:
Volume of citric acid = ?
Solution
Equation of the reaction:
C₆H₈O₇ + 3NaHCO₃ → Na₃C₆H₅O₇ + 3H₂O + 3CO₂
Procedure:
- We work from the known parameters to the unknown. From the statement of the problem, we can approach the solution from the parameters of the baking powder.
- From the baking powder, we can establish a molar relationship between the two reactants. We employ the mole concept in this regard.
- We find the number of moles of the baking powder that went into the reaction using the expression below:
Number of moles = 
Number of moles =
= 0.179mole
- From the equation of the reaction, we can find the number of moles of the citric acid:
3 moles of baking powder reacted with 1 mole of citric acid
0.179 moles of baking powder would react with
:
This yields 0.059mole of citric acid
- To find the volume of the citric acid, we use the mole expression below:
Volume of citric acid = 
Volume of citric acid =
= 0.074L
Expressing in mL gives 74mL
Answer:
Our energy supply comes mainly from fossil fuels, with nuclear power and renewable sources rounding out the mix.
The energy associated with an object's motion is called kinetic energy. Kinetic energy is the energy of motion. All moving objects have kinetic energy
Explanation:
Answer: 22.5 percent of incoming solar radiation goes directly to the surface of the Earth and is absorbed.
Explanation: Transfer of radiation through a planet's atmosphere. A planet and its atmosphere, in our solar system, can radiate back to space only as much energy as it absorbs from incoming solar radiation.
Answer:
P=19.32g/cm³
Explanation:
m=9.66g
v=0.5cm³
P=mass/volume (density formula)
=9.66/0.5
=19.32g/cm³