Enzymes are needed for metabolic pathways in the body, respiration, digestion and other important life processes. When enzymes function properly, homeostasis is maintained. However, if an enzyme is lacking or has an incorrect shape due to genetic mutation, this can lead to disease within an organism.
Answer:
141g of CCl₄
Explanation:
First, we have to write the balanced equation.
CCl₄(g) + 2 HF(g) ⇄ CF₂Cl₂(g) + 2 HCl(g)
We can calculate how many moles of CF₂Cl₂ using the ideal gas equation.
V = 14.9 dm³ = 14.9 L
T = 21°C + 273.15 = 294.15 K
P = 1.48 atm
R = 0.08206 atm.L/mol.K

We can use proportions to find the mass of CCl₄ required to obtain 0.914 moles of CF₂Cl₂. According to the balanced equation, 1 mol of CF₂Cl₂ is produced when 1 mol of CCl₄ reacts. And the molar mass of CCl₄ is 154 g/mol.

Answer:
Moving them farther apart
Explanation:
One can try to change the distance between the two positive charges in such a way that it increases the distance and decreased the electric force.
Answer:
Tides . hope this helps
Explanation:
the tidal force causes earth and its water to bulge out on the side closest to the moon
Answer:
The major and minor products formed from the first structure have more alkyl groups on the C═C than those formed from the second structure.
The second structure has more hydrogens attached to the β carbons than the first structure.
Explanation:
It is possible to explain the reaction based on Zaitsev’s rule that states that an elimination will normally lead to the most stable alkene as the major product. This normally translates to it giving the most substituted alkene.
The two adjacent carbons in the first molecule are secondary. That means the two products will produce a disubstituted alkene but in the second molecule just one product will be disubstituted. Thus:
The first structure has more hydrogens attached to the β carbons than the second structure. <em>FALSE</em>. If the structure has more hydrogens will produce an alkene less stable.
The major and minor products formed from the first structure have more alkyl groups on the C═C than those formed from the second structure. <em>TRUE</em>. As the first structure have more alkyl groups the product is most stable.
The major and minor products formed from the second structure have more alkyl groups on the C═C than those formed from the first structure. <em>FALSE</em>. Is the opposite of the last option.
The second structure has more hydrogens attached to the β carbons than the first structure. <em>TRUE</em>. As the second structure has more hydrogens, the alkenes produced will be less substituted being less stable.
I hope it helps!