Answer:
A: element B
B: element A
C: element B
D: element A
Explanation:
decrease in size leads increase in electronegativity because the smaller the size, the closer the shell is to the nucleus. Also, atomic radius decreases to the right and up on the periodic table. Atomic radius increases to the left and down a period. I hope this helps!
On the off chance that the red blood cells are smaller than ordinary, this is called microcytic anemia. The significant reasons for this sort are low-level iron, anemia, thalassemia.
Answer:
A, C and D are correct.
Explanation:
Hello.
In this case, since the relationship between the vapor pressure of a solution is directly proportional to the mole fraction of the solvent and the vapor pressure of the pure solvent as stated by the Raoult's law:

Since the solute is not volatile, the mole fraction of the solute is not taken into account for vapor pressure of the solution, therefore A is correct whereas B is incorrect.
Moreover, since the higher the vapor pressure, the weaker the intermolecular forces due to the fact that less more molecules are like to change from liquid to vapor and therefore more energy is required for such change, we can evidence that both C and D are correct.
Best regards.
Answer:
1. 72.9 atm
2. 0.43937 K
Explanation:
1. Gray- lussacs law is p1/t1=p2/t2 so we use this formula to figure it out by filling in the variables and solving
p1=45.0 atm
t1=323 K
p2= ?
t2=523 K
Now we fill in this in the formula and solve - 45.0 atm/ 323 K = p2/ 523 K
and now we solve for p2 by multiplying 535k by each side to give us p2
2. Using the same formula we get 10.0atm/? = 12.0 atm/ 273.15 k and we divide both sides by 10.0 atm
Answer: The oxidation number of Cu decreased
Explanation: In Cu2O equation Cu has an oxidation number of
Cu+1 O-2
then in the product side Cu is represented as a single element.
The rule on oxidation number for an individual element is always O
So Cu has 0 oxidation number.