Step-by-step explanation:
angle 2 = 2x + 10 deg (corresponding angles) or 180 - 4x + 46 deg (angles on a straight line are supplementary)
therefore,
2x + 10 = 226 - 4x
6x = 216
x = 36
hence,
angle 2 = 2(36) + 10 = 82deg
Topic: Angles
If you like to venture further, do check out my insta (learntionary) where I regularly post useful math tips! Thank you!
Hey there! :)
When teachers ask you for the standard form in math, they are asking you to find the simplest form an equation with variables can be in.
Ax + By = C
Example : put y=2x -3 into standard form.
Subtract 2x from both sides.
-2x + y = -3 —> standard form.
Hope this helped! :)
Using the Pythagorean theorem:
Hypotenuse = sqrt( 20^2 + 15^2)
Hypotenuse = sqrt( 400 + 225)
Hypotenuse = sqrt(625)
Hypotenuse = 25
Answer: 25 inches
![\bf n^{th}\textit{ term of an arithmetic sequence} \\\\ a_n=a_1+(n-1)d\qquad \begin{cases} n=n^{th}\ term\\ a_1=\textit{first term's value}\\ d=\textit{common difference} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ a_n=2-5(n-1)\implies a_n=\stackrel{\stackrel{a_1}{\downarrow }}{2}+(n-1)(\stackrel{\stackrel{d}{\downarrow }}{-5})](https://tex.z-dn.net/?f=%5Cbf%20n%5E%7Bth%7D%5Ctextit%7B%20term%20of%20an%20arithmetic%20sequence%7D%20%5C%5C%5C%5C%20a_n%3Da_1%2B%28n-1%29d%5Cqquad%20%5Cbegin%7Bcases%7D%20n%3Dn%5E%7Bth%7D%5C%20term%5C%5C%20a_1%3D%5Ctextit%7Bfirst%20term%27s%20value%7D%5C%5C%20d%3D%5Ctextit%7Bcommon%20difference%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20a_n%3D2-5%28n-1%29%5Cimplies%20a_n%3D%5Cstackrel%7B%5Cstackrel%7Ba_1%7D%7B%5Cdownarrow%20%7D%7D%7B2%7D%2B%28n-1%29%28%5Cstackrel%7B%5Cstackrel%7Bd%7D%7B%5Cdownarrow%20%7D%7D%7B-5%7D%29)
so, we know the first term is 2, whilst the common difference is -5, therefore, that means, to get the next term, we subtract 5, or we "add -5" to the current term.

just a quick note on notation:
![\bf \stackrel{\stackrel{\textit{current term}}{\downarrow }}{a_n}\qquad \qquad \stackrel{\stackrel{\textit{the term before it}}{\downarrow }}{a_{n-1}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{current term}}{a_5}\qquad \quad \stackrel{\textit{term before it}}{a_{5-1}\implies a_4}~\hspace{5em}\stackrel{\textit{current term}}{a_{12}}\qquad \quad \stackrel{\textit{term before it}}{a_{12-1}\implies a_{11}}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bcurrent%20term%7D%7D%7B%5Cdownarrow%20%7D%7D%7Ba_n%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bthe%20term%20before%20it%7D%7D%7B%5Cdownarrow%20%7D%7D%7Ba_%7Bn-1%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bcurrent%20term%7D%7D%7Ba_5%7D%5Cqquad%20%5Cquad%20%5Cstackrel%7B%5Ctextit%7Bterm%20before%20it%7D%7D%7Ba_%7B5-1%7D%5Cimplies%20a_4%7D~%5Chspace%7B5em%7D%5Cstackrel%7B%5Ctextit%7Bcurrent%20term%7D%7D%7Ba_%7B12%7D%7D%5Cqquad%20%5Cquad%20%5Cstackrel%7B%5Ctextit%7Bterm%20before%20it%7D%7D%7Ba_%7B12-1%7D%5Cimplies%20a_%7B11%7D%7D)
Answer:
The approximate area is 35 square centimeters
Step-by-step explanation:
we know that
The cross section passing through the diagonal of opposite faces of the cube is a rectangle
so
the approximate area is equal to

where
b is the diagonal of a face
h is the length side of the cube
we have

substitute
