Complete question :
According to the National Association of Realtors, it took an average of three weeks to sell a home in 2017. Suppose data for the sale of 39 randomly selected homes sold in Greene County, Ohio, in 2017 showed a sample mean of 3.6 weeks with a sample standard deviation of 2 weeks. Conduct a hypothesis test to determine whether the number of weeks until a house sold in Greene County differed from the national average in 2017. Useα = 0.05for the level of significance, and state your conclusion
Answer:
H0 : μ = 3
H1 : μ ≠ 3
Test statistic = 1.897
Pvalue = 0.0653
fail to reject the Null ; Hence, we conclude that their is no significant to accept the claim that number I weeks taken to sell a house differs.
Step-by-step explanation:
Given :
Sample size, n = 40
Sample mean, x = 3.6
Population mean, μ = 3
Standard deviation, s = 2
The hypothesis :
H0 : μ = 3
H1 : μ ≠ 3
The test statistic :
(xbar - μ) ÷ (s/√n)
(3.6 - 3) / (2/√40)
0.6 / 0.3162277
Test statistic = 1.897
Using T test, we can obtain the Pvalue from the Test statistic value obtained :
df = n - 1; 40 - 1 = 39
Pvalue(1.897, 39) = 0.0653
Decison region :
If Pvalue ≤ α ; Reject the null, if otherwise fail to reject the Null.
α = 0.05
Pvalue > α ; We fail to reject the Null ; Hence, we conclude that their is no significant to accept the claim that number I weeks taken to sell a house differs.
Complete the square by using the following form:


The vertex is at (3,7)
The squared term is positive so it opens up and vertex is a minimum.
The perimeter of the rectangle is given by the formulae,

Where

is the length and

is the width of the rectangle.
Now let us substitute into the formula,


The above expression corresponds to option
F.
Now when we expand the bracket, we obtain,

This also corresponds to option A.
The correct answers are
Answer:
No
Step-by-step explanation:
0.26*16 + 12.25 = 16.41
16.41 < 16.50