Answer:
x = 12
(getting to the 20 character limit, please ignore this)
Answer:
3) 1 5/6 mi
4) a. 4 cm, 6 ft
b. 6.4 cm, 9.6 ft
c. same as part a
Step-by-step explanation:
3) Each of the given distances appears twice in the sum of side measures that is the perimeter. Hence by walking the perimeter twice, Kyle walks each of the given distances 4 times. His total walk is ...
4×1/3 + 4×1/8 = 4/3 + 4/8
= 1 1/3 + 1/2 = 1 2/6 + 3/6
= 1 5/6 . . . . . miles
___
4) Since the figure is rectilinear (all angles are right angles, and all sides are straight lines), the sum of partial dimensions in one direction is equal to the whole dimension in that direction.
a. 8 cm = 4 cm + x
8 cm - 4 cm = x = 4 cm
The distance in the room is ...
(4 cm)×(1.5 ft/cm) = 6 ft
b. 10.3 cm = 3.9 cm + y
10.3 cm - 3.9 cm = y = 6.4 cm
The distance in the room is ...
(6.4 cm)×(1.5 ft/cm) = 9.6 ft
c. The answer to part b was obtained in the same way as the answer to part a. The unknown dimension is the difference of given dimensions. The actual length in the room is the model length multiplied by the inverse of the scale factor.
Answer:
54
Step-by-step explanation:
The two angles add to 90 degrees since they are complementary
the ratio is 3:2
Multiply by x
3x:2x
Add them together and set equal to 90
3x+2x=90
5x=90
Divide each side by 5
5x/5 = 90/5
x = 18
The first angle is 3*18 = 54
The second angle is 2*18 = 36
Assuming that the pool was drained at a constant rate, the speed at which it was drained can be expressed as a function of time. In this case, the pool level will be expressed in feet per hour.
The time changed by 4 hours (6-2), and the level of the pool changed by -8 feet (2-10). Diving the feet by the hours to get the rate of decreasing depth, we find that the rate equals -2 feet/hour.
Answer:
15
measure of third side is = 25^2 - 20^2
= 625 - 400
= 225
= √225
= 15
hope it helps