21v + 8 - 12v - 7 + 3t - 1t = (combine like terms)
9v + 2t + 1 <==
The objective function is simply a function that is meant to be maximized. Because this function is multivariable, we know that with the applied constraints, the value that maximizes this function must be on the boundary of the domain described by these constraints. If you view the attached image, the grey section highlighted section is the area on the domain of the function which meets all defined constraints. (It is all of the inequalities plotted over one another). Your job would thus be to determine which value on the boundary maximizes the value of the objective function. In this case, since any contribution from y reduces the value of the objective function, you will want to make this value as low as possible, and make x as high as possible. Within the boundaries of the constraints, this thus maximizes the function at x = 5, y = 0.
Answer:
why why why humm why why why why
Step-by-step explanation:
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
2
2
+
6
+
4
=
0
2x^{2}+6x+4=0
2x2+6x+4=0
=
2
a={\color{#c92786}{2}}
a=2
=
6
b={\color{#e8710a}{6}}
b=6
=
4
c={\color{#129eaf}{4}}
c=4
=
−
6
±
6
2
−
4
⋅
2
⋅
4
√
2
⋅
2
x=\frac{-{\color{#e8710a}{6}} \pm \sqrt{{\color{#e8710a}{6}}^{2}-4 \cdot {\color{#c92786}{2}} \cdot {\color{#129eaf}{4}}}}{2 \cdot {\color{#c92786}{2}}}
x=2⋅2−6±62−4⋅2⋅4
brainliest and follow and thanks
Answer:
give each charity $60
Step-by-step explanation:
$814 to divide equally to 5 charities.
From 814 if we give -100, -100, -100, -100, -100, we have left 314 to split in 5
the most useful next step is to give each charity $60
From $814 if we give -100, -100, -100, -100, -100
-60, -60, -60, -60, -60
we have left now:
814 -5*100 -5*60 = 814-500-300 = $14 left to split among the 5 charity.