Answer:
The probability of drawing the compliment of a king or a queen from a standard deck of playing cards = 0.846
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Let 'S' be the sample space associated with the drawing of a card
n (S) = 52C₁ = 52
Let E₁ be the event of the card drawn being a king

Let E₂ be the event of the card drawn being a queen

But E₁ and E₂ are mutually exclusive events
since E₁ U E₂ is the event of drawing a king or a queen
<u><em>step(ii):-</em></u>
The probability of drawing of a king or a queen from a standard deck of playing cards
P( E₁ U E₂ ) = P(E₁) +P(E₂)

P( E₁ U E₂ ) = 
<u><em>step(iii):-</em></u>
The probability of drawing the compliment of a king or a queen from a standard deck of playing cards



<u><em>Conclusion</em></u>:-
The probability of drawing the compliment of a king or a queen from a standard deck of playing cards = 0.846
Answer:
The answer is 16.8 cm^ 2.
× equals negative 4 i think and y equals -3
Answer:
i^32=1
i^25=i
i^86=-1
i^51=-i
Step-by-step explanation:
Follow the Rule of Four of I for this,
i^1=
I^2=-1
I^3=-i
I^4=1