1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis-greek [22]
3 years ago
8

What do you know to be true about the values of p and q?

Mathematics
2 answers:
Margaret [11]3 years ago
8 0
^^^^^^^^^^^^^^^^^^^^
artcher [175]3 years ago
3 0

Answer:

p = q

Step-by-step explanation:

Angles in a triangle add up to 180°

For the left triangle:

180 = p + 20 + 80

p = 80

For the right triangle:

180 = q + 45 + 55

q = 80

Therefore, p = q

You might be interested in
if 4 men and 1 dog can dig 12 holes in 4 days, and 2 men and 1 dog can dig 4 holes in 2 days, how long will it take 1 man and 2
madam [21]
 The answer is 8 days
3 0
3 years ago
Find the GCF 0f 12 and 18
melisa1 [442]

Answer:

  6

Step-by-step explanation:

Using Euclid's algorithm, we divide the larger by the smaller. If the remainder is zero, the divisor is the GCF. Otherwise, we replace the larger with the remainder and repeat.

  18 ÷ 12 = 1 r 6

  12 ÷ 6 = 2 r 0 . . . . the GCF is 6

__

You can also factor the numbers and see what the common factors are.

  18 = 2·3·3

  12 = 2·2·3

The common factors are 2·3 = 6.

In the factorizations, we see 2 to powers of 1 and 2, and we see 3 to powers of 1 and 2. The GCF is the product of the common factors to their lowest powers: (2^1)(3^1) = (2)(3) = 6

8 0
2 years ago
If a circle has a radius of 2.5 inches what is the area of the circle
daser333 [38]
The answer should be 19.63
7 0
3 years ago
Read 2 more answers
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
The chairlift at a ski resort rises a total of 2600 feet from where it starts. The angle of elevation is about . How far do ride
MArishka [77]
<span>Since 3100/1.4*5280=3100/7392=24.8 degrees for the angle of the ski slope.</span>
7 0
3 years ago
Other questions:
  • Please see attachment to help. I really need it.
    6·1 answer
  • Sandi tracks her calories burned during water aerobics class. The number of calories she burns is expressed by the function c(t)
    5·1 answer
  • Owen has enough materials to build up to 10 birdhouses in shop class. Each birdhouse needs 12 square feet of wood. The function
    5·2 answers
  • 3-2(1+2)?<br> 1 (1+2) <br> 1+2<br> 3
    14·2 answers
  • A volleyball player serves the ball from a height of 6.5 feet above the ground with an initial vertical velocity of 21 feet per
    14·1 answer
  • Points C, D, and G lie on plane X. Points E and F lie on plane Y.
    7·1 answer
  • Find the set of values of x for which x^2-x-6&gt;0 and 10-2x&lt;5
    11·1 answer
  • Please help! WILL GIVE BRAINLIEST!!
    8·1 answer
  • |4x+8|&gt; 2<br> what is the answer
    9·2 answers
  • What is the sum of 2 to the power of 3
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!