Answer:
3 Units
Step-by-step explanation:
Secant RM intersects secant RN at point R.
The secants intersects the circle at points P and Q respectively as seen in the diagram.
To determine the length of RQ, we use the Theorem of Intersecting Secants.
Applying this on the diagram, we have:
RP x RN=RQ X RM
4(4+5)=RQ(RQ+9)
Let the length of RQ=x

Therefore, length of RQ=3 Units
Just solve the equation! if the dot means multiply, then
35 - (5 x 2) + (16 / 4) because of BIDMAS or PEDMAS or whatever abbreviation you use, where the order is Brackets Indices Division Multiplication Addition and Subtraction.
35 - 10 + 4 = 29
Therefore the answer is 29.
Hope I helped!