1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Makovka662 [10]
3 years ago
7

if u can answer all them correctly ill make a post for u and u can have all my coins just pls answer them all im begging

Mathematics
1 answer:
Shkiper50 [21]3 years ago
7 0

Answer: this is a continuation starting in number 4 (use the same steps as example 3)

Step-by-step explanation:

-12

45

-12

14

32

-2

5

You might be interested in
The process standard deviation is 0.27, and the process control is set at plus or minus one standard deviation. Units with weigh
mr_godi [17]

Answer:

a) P(X

And for the other case:

tex] P(X>10.15)[/tex]

P(X>10.15)= P(Z > \frac{10.15-10}{0.15}) = P(Z>1)=1-P(Z

So then the probability of being defective P(D) is given by:

P(D) = 0.159+0.159 = 0.318

And the expected number of defective in a sample of 1000 units are:

X= 0.318*1000= 318

b) P(X

And for the other case:

tex] P(X>10.15)[/tex]

P(X>10.15)= P(Z > \frac{10.15-10}{0.05}) = P(Z>3)=1-P(Z

So then the probability of being defective P(D) is given by:

P(D) = 0.00135+0.00135 = 0.0027

And the expected number of defective in a sample of 1000 units are:

X= 0.0027*1000= 2.7

c) For this case the advantage is that we have less items that will be classified as defective

Step-by-step explanation:

Assuming this complete question: "Motorola used the normal distribution to determine the probability of defects and the number  of defects expected in a production process. Assume a production process produces  items with a mean weight of 10 ounces. Calculate the probability of a defect and the expected  number of defects for a 1000-unit production run in the following situation.

Part a

The process standard deviation is .15, and the process control is set at plus or minus  one standard deviation. Units with weights less than 9.85 or greater than 10.15 ounces  will be classified as defects."

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the weights of a population, and for this case we know the distribution for X is given by:

X \sim N(10,0.15)  

Where \mu=10 and \sigma=0.15

We can calculate the probability of being defective like this:

P(X

And we can use the z score formula given by:

z=\frac{x-\mu}{\sigma}

And if we replace we got:

P(X

And for the other case:

tex] P(X>10.15)[/tex]

P(X>10.15)= P(Z > \frac{10.15-10}{0.15}) = P(Z>1)=1-P(Z

So then the probability of being defective P(D) is given by:

P(D) = 0.159+0.159 = 0.318

And the expected number of defective in a sample of 1000 units are:

X= 0.318*1000= 318

Part b

Through process design improvements, the process standard deviation can be reduced to .05. Assume the process control remains the same, with weights less than 9.85 or  greater than 10.15 ounces being classified as defects.

P(X

And for the other case:

tex] P(X>10.15)[/tex]

P(X>10.15)= P(Z > \frac{10.15-10}{0.05}) = P(Z>3)=1-P(Z

So then the probability of being defective P(D) is given by:

P(D) = 0.00135+0.00135 = 0.0027

And the expected number of defective in a sample of 1000 units are:

X= 0.0027*1000= 2.7

Part c What is the advantage of reducing process variation, thereby causing process control  limits to be at a greater number of standard deviations from the mean?

For this case the advantage is that we have less items that will be classified as defective

5 0
3 years ago
Find the length indicated. find CE
torisob [31]
Okay, to find length CE, your going to know the value of <em>x</em>. Length BC + CE = BD + DE.
3x+47+x+26=27+x+10
Simplify the equation to get
4x+73=37+x
you can choose one of four ways to continue, but I will choose to subtract x
3x+73=37
Subtract 73 from both sides of the equal sign
3x=-36
divide by 3 on both sides of the equal sign to get the value of x
x=-12

Now, plug in -12 for x in length CE to get -12+26=14
6 0
4 years ago
Help me please !!!!!!!
Diano4ka-milaya [45]
The answer would be A
3 0
3 years ago
Can someone help me with this question plzzzzz
Ann [662]

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

7d + d - 4d - 7 = 5d

8d - 4d - 7 = 5d

4d - 7 = 5d

5d = 4d - 7

Subtract sides 4d

- 4d + 5d =  - 4d + 4d - 7

d =  - 7

Thus the correct answer is Option three.

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

8 0
3 years ago
Is this a function? <br> A) yes<br> B) No
Lelu [443]
Don’t listen to get the links they are annoying
6 0
3 years ago
Other questions:
  • What is 645 divided by 8
    7·2 answers
  • Which of these shapes is congruent to the given shape?
    12·1 answer
  • Find the value of x .
    12·2 answers
  • INTERPRETING EXPRESSIONS: <br> ln the expression 9x - 9, the variable is ___
    11·1 answer
  • The factors of 35, 48, and 60 are listed below. Two of these numbers are relatively prime. Click the two numbers that are
    6·1 answer
  • 1. The slope-intercept form of a line is shown below.
    13·1 answer
  • Helpppp meeeeee ill mark brainliest
    11·2 answers
  • Work out the area of a rectangle with base, b=28mm and perimeter, P=74mm.
    15·2 answers
  • What is the total value of a $6,250 investment after five years at 2.75% interest compounded quarterly?
    7·1 answer
  • Select all correct answers.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!