To solve this problem you must apply the proccedure shown below:
1. You have the following information given in the problem above:
- Mount Mckinley is 20,320 feet above sea level.
- Mauna kea is 13,796 feet above sea level.
2. Then, you only need to substract both quantities to solve the exercise, as following:

Therefore, as you can see, the answer is: 6,524 feet.
The correct structure of the question is as follows:
The function f(x) = x^3 describes a cube's volume, f(x) in cubic inches, whose length, width, and height each measures x inches. If x is changing, find the (instantaneous) rate of change of the volume with respect to x at the moment when x = 3 inches.
Answer:
Step-by-step explanation:
Given that:
f(x) = x^3
Then;
V = x^3
The rate whereby V is changing with respect to time is can be determined by taking the differentiation of V
dV/dx = 3x^2
Now, at the moment when x = 3;
dV/dx = 3(3)^2
dV/dx = 3(9)
dV/dx = 27 cubic inch per inch
Suppose it is at the moment when x = 9
Then;
dV/dx = 3(9)^2
dV/dx = 3(81)
dV/dx = 243 cubic inch per inch
If temperature (T) and amount of gas (n) remain constant, but pressure (P) and volume (V) change, then the ideal gas law: PV = nRT becomes
P1V1 = P2V2 --> (41)(16) = P2 (4)
--> P2 (4) = 656
P2 = 656/4 = 164 kPa
This is the Commutative Property of addition. called Commutative because the numbers move around to the other order, or "commute"