1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harlamova29_29 [7]
3 years ago
9

Help meh plz for brainlist

Mathematics
1 answer:
yanalaym [24]3 years ago
8 0

Answer:

14

Step-by-step explanation:

(pemdas) 3 3^2 9 x 3 = 27 - 13

You might be interested in
Can someone help me with 5-9 please?!?!? Thank you
valina [46]

5 is 1!!!!!!

Step-by-step explanation:

im sorry i dont know the others

3 0
1 year ago
What is 8/12 + A/12=2/b
il63 [147K]

Answer:

the answer i got was a=−8b+24/b

Step-by-step explanation:

hoped I helped:)

8 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%2By%3D1%7D%20%5Catop%20%7Bx-2y%3D4%7D%7D%20%5Cright.%20%5C%5C%5Clef
brilliants [131]

Answer:

<em>(a) x=2, y=-1</em>

<em>(b)  x=2, y=2</em>

<em>(c)</em> \displaystyle x=\frac{5}{2}, y=\frac{5}{4}

<em>(d) x=-2, y=-7</em>

Step-by-step explanation:

<u>Cramer's Rule</u>

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system

\Delta=\begin{vmatrix}a &b \\c  &d \end{vmatrix}

We also define:

\Delta_x=\begin{vmatrix}p &b \\q  &d \end{vmatrix}

And

\Delta_y=\begin{vmatrix}a &p \\c  &q \end{vmatrix}

The solution for x and y is

\displaystyle x=\frac{\Delta_x}{\Delta}

\displaystyle y=\frac{\Delta_y}{\Delta}

(a) The system to solve is

\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:

\Delta=\begin{vmatrix}1 &1 \\1  &-2 \end{vmatrix}=-2-1=-3

\Delta_x=\begin{vmatrix}1 &1 \\4  &-2 \end{vmatrix}=-2-4=-6

\Delta_y=\begin{vmatrix}1 &1 \\1  &4 \end{vmatrix}=4-3=3

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{3}{-3}=-1

The solution is x=2, y=-1

(b) The system to solve is

\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:

\Delta=\begin{vmatrix}4 &-1 \\1  &-1 \end{vmatrix}=-4+1=-3

\Delta_x=\begin{vmatrix}6 &-1 \\0  &-1 \end{vmatrix}=-6-0=-6

\Delta_y=\begin{vmatrix}4 &6 \\1  &0 \end{vmatrix}=0-6=-6

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-6}{-3}=2

The solution is x=2, y=2

(c) The system to solve is

\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:

\Delta=\begin{vmatrix}-1 &2 \\1  &2 \end{vmatrix}=-2-2=-4

\Delta_x=\begin{vmatrix}0 &2 \\5  &2 \end{vmatrix}=0-10=-10

\Delta_y=\begin{vmatrix}-1 &0 \\1  &5 \end{vmatrix}=-5-0=-5

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-10}{-4}=\frac{5}{2}

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-5}{-4}=\frac{5}{4}

The solution is

\displaystyle x=\frac{5}{2}, y=\frac{5}{4}

(d) The system to solve is

\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:

\Delta=\begin{vmatrix}6 &-1 \\4  &-2 \end{vmatrix}=-12+4=-8

\Delta_x=\begin{vmatrix}-5 &-1 \\6  &-2 \end{vmatrix}=10+6=16

\Delta_y=\begin{vmatrix}6 &-5 \\4  &6 \end{vmatrix}=36+20=56

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{16}{-8}=-2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{56}{-8}=-7

The solution is x=-2, y=-7

4 0
3 years ago
Shawna found coins worth $4.32. One- fourth of the found coins are pennies and one- sixth are quarters. The number of nickels fo
eduard

Answer:

8 quarters

12 nickels

12 pennies

16 dimes

Step-by-step explanation:

The trick is to ASSUME the dimes.

Start by thinking about the three explicit premises and the one implicit premise.

1) Quarters = 1/6 of total coins

2) Nickels = 1.5 the number of quarters

3) Pennies = 1/4 of total coins

Also, ASSUME an unknown number of dimes to fill in the gap.

48 Total Coins = $4.32

⅙ of 48 = 8 8 quarters = $2.00

1.5 x 8 = 12 12 nickels = $0.60

¼ of 48 = 12 12 pennies = $0.12

Add those coins = $2.72

Take the known total and minus this sum.

$4.32 - $2.72 = $1.60

16 dimes = $1.60

Thus, you have the following:

8 quarters (⅙ of total coins)   $2.00

12 nickels (1.5 the number of quarters) $0.60

12 pennies (¼ the number of total coins) $0.12    

+ 16 dimes     $1.60

Total Coins 48      $4.32

8 0
3 years ago
Eaches seven science classes. He needs 12 liters of water for each class to perform an upcoming experiment. How many milliliters
Angelina_Jolie [31]

Answer:

84

Step-by-step explanation:

7 × 12 = 84

84 × 1000 = 84000

84000 mililetre

7 0
3 years ago
Other questions:
  • Simplify: 7·(a+5)–30 =
    14·1 answer
  • Evaluate the expression. 2 • 15 – 7 + 4
    6·1 answer
  • Explain how you could use Distributive Property and mental math to find 5 x 198
    9·1 answer
  • A=p(1+rt) solve r answer
    7·1 answer
  • if the area of the rectangle is given by the polynomial 2x-7-15 what is the dimension of the rectangle in terms of x​
    8·1 answer
  • The average person's stride lenghth the distance covered by one step is aproximently 2.5 feet long. How many steps would the ave
    14·1 answer
  • I need help with this question 3 and 4 ​
    7·2 answers
  • if in a parallelogram diagonals bisect each other at right angle and are equal then it is a ___________​
    9·2 answers
  • A can of green spray paint is held upright 8 inches away from a wall. The nozzle on the
    10·1 answer
  • Write the interval using interval notation to describe the set of values shown above.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!