This is a plant cell because there are chloroplasts in this diagram which are present in plant cells
Answer:
1750L
Explanation:
Given
Initial Temperature = 25°C
Initial Pressure = 175 atm
Initial Volume = 10.0L
Final Temperature = 25°C
Final Pressure = 1 atm
Final Volume = ?
This question is an illustration of ideal gas law.
From the given parameters, the initial temperature and final temperature are the same; this implies that the system has a constant temperature.
As such, we'll make use of Boyle's Law to solve this;
Boyle's Law States that:
P₁V₁ = P₂V₂
Where P₁ and P₂ represent Initial and Final Pressure, respectively
While V₁ and V₂ represent Initial and final volume
The equation becomes
175 atm * 10L = 1 atm * V₂
1750 atm L = 1 atm * V₂
1750 L = V₂
Hence, the final volume that can be stored is 1750L
Answer:
An anion that has a larger radius.
Explanation:
<span>Answer is: the symbol is Cl.
[Ne ] 3s</span>² 3p⁶ is electric configuration of noble gas argon, neon (Ne) has10 electrons plus 6 electrons in 3s and 3p orbitals. Neutral atom of m<span>onatomic ion that has a charge of 1– has one electron less than argon, so that atom (chlorine) has 17 electrons. Charge of 1- means one electron more for ion: 17 + 1 = 18.
</span>
In amides, the carbonyl carbon is bonded to a nitrogen. The nitrogen in an amide can be bonded either to hydrogens, to carbons, or to both. ... Another way of thinking of an ester is that it is a carbonyl bonded to an alcohol. Thioesters are similar to esters, except a sulfur is in place of the oxygen.