Answer:
Higher frequency.
Explanation:
Sound are mechanical waves that are highly dependent on matter for their propagation and transmission.
Sound travels faster through solids than it does through either liquids or gases. A student could verify this statement by measuring the time required for sound to travel a set distance through a solid, a liquid, and a gas.
Mathematically, the speed of a sound is given by the formula:
Generally, the frequency of a sound wave determines the pitch of the sound that would be heard.
A shrill sound refers to a type of sound that is typically sharp, high pitched and as such has higher frequency.
Hence, shrill sound is of higher frequency.
Answer:
Option D
Explanation:
The work done can be given by the mechanical energy used to do work, i.e., Kinetic energy and potential energy provided to do the work.
In all the cases, except option D, the energy provided to do the useful work is not zero and hence work done is not zero.
In option D, the box is being pulled with constant velocity, making the acceleration zero and thus Kinetic energy of the system is zero. Hence work done in this case is zero.
<u>Answer:</u>
0.24 m
<u>Explanation:</u>
Given:
Wave velocity ( v ) = 360 m / sec
Frequency ( f ) = 1500 Hz
We have to calculate wavelength ( λ ):
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > λ = v / f
Putting values here we get:
= > λ = 360 / 1500 m
= > λ = 36 / 150 m
= > λ = 0.24 m
Hence, wavelength of sound is 0.24 m.