<u>Answer:</u>
Pressure exerted = 500 Pa
<u>Explanation:</u>
The formula for pressure is as follows:

In this case,
Force applied = 100N
Area = 40cm × 50cm = 2000cm² = 2000 × 10⁻⁴ = 0.2m²
Substituting these values into the formula:
Pressure = 
⇒ Pressure = 500 Pa
Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
5.625 hours and it is 450 divided by 80
Have A Good Day
Answer:
We know that Force = mass × acceleration
By substituting the values we get,
30 N = 15 kg × a (where a is acceleration)
Or we can write it as
15 kg × a = 30 N
Transposing 15 to RHS,
a = 30 ÷ 15 m/s²
Therefore, acceleration = 2 m/s²
pls give brainliest for the answer