Protons and neutrons exist within the neucleus, while electrons do not.
Answer:
speed = 3.7/46 = 0.080m/s
d= 3.7m
t= 46s
Explanation:
Chemical properties describe how things undergo chemical reactions, while physical properties describe how things behave when they're not undergoing reactions.
In the case of melting a metal, the melted metal continues to be the same material - just in a liquid rather than a solid form. As a result, melting (and all phase changes, for that matter) is a physical change and the ability of the metal to melt at 450 degrees is a physical property.
Answer:
- <em>Chemical equations are balanced </em><u>to comply with the law of conservation of mass.</u>
Explanation:
Law of conservation of mass states that matter cannot be either created or destroyed.
A skeleton chemical equation shows the reactants and products of a chemical reaction without taking into account the real proportion in which the reactants combine and the products are obtained.
An example of a skeleton reaction is the combustion of methane:
Such as that equation is shown, there are four atoms of hydrogen in the reactants but only 2 atoms of hydrogen in the products. Also, there are 2 atoms of oxygen in the reactants but three atoms of oxygen in the products. This seems to show that some atoms of hydrogen have been destroyed and some atoms of oxygen have been created. This is impossible as it is against the law of conservation of matter.
Then, to show a real situation, the chemical equation of combustion must be balanced, adjusting the coefficients. This is the balanced chemical equation:
Now you see that the number of atoms of each matter is conserved: the number of carbon atoms in each side is 1, the number of atoms of hydrogen in each side is 4, and the number of atoms of oxygen in each side is 4. Thus, by balancing the chemical equation, the law of conservation of mass is not violated.
Answer: Option (c) is the correct answer.
Explanation:
A binary mixture is defined as the mixture which contains two components in the aqueous medium. The two components are solute and solvent.
And, volatility is defined as the ability of a liquid solution or substance to readily change into vapors.
For a binary solution the expression for relative volatility is as follows.
= 
where,
= relative volatility of more volatile component i
= vapor-liquid equilibrium concentration of component i in the vapor phase
= vapor-liquid equilibrium concentration of component i in the liquid phase
= vapor-liquid equilibrium concentration of component j in the vapor phase
= vapor-liquid equilibrium concentration of component j in the liquid phase
So, when
> 1 then separation by distillation is easier in nature.
Thus, we can conclude that in order to separate the components of a binary mixture, the relative volatility should be greater than unity.