To make it easier, assume that we have a total of 100 g of a compound. Hence, we have 58.80g of xenon, 7.166g of oxygen, and 34.04g of fluorine.
Know we will convert each of these masses to moles by using the atomic masses:
58.8/131.3 = 0.45 mole of Xe
7.166/16 = 0.45 mole of O
34.04/19 = 1.79 mole of F
Now, we will divide all the mole numbers by the smallest among them and get the number of atoms in the compound:
Xe = 0.45/0.45 = 1
O = 045/0.45 = 1
F = 1.79/0.45 = 3.98 = 4
So, the empirical formula of the compound XeOF₄
Answer:
Yes, given statement is true.
Explanation:
Given that a cylinder of 1000 ml is marked at every 100 ml.
During the test, the student can easily check the volume of liquid so the student's guess is 750 ml true.
With this measurement, we can estimate that 1/10th of 100 ml can be measured.
So, given statement is correct.
Answer:
8.76M
Explanation:
Given that
Mass from the density = 1141g
According to the given situation the computation of molarity of the solution is shown below:-
we will took HCL solution which is 1000mL
HCl = 28% by mass
So,
Mass of HCl in 1-litre solution is

Which gives the result of molar mass HCI is
= 319.48g
/mol
Now,
Molarity is

Which gives results of molarity is
= 8.76M
Answer:
The nucleus represents a major evolutionary transition. As a consequence of separating translation from transcription many new functions arose, which likely contributed to the remarkable success of eukaryotic cells. Here we will consider what has recently emerged on the evolutionary histories of several key aspects of nuclear biology; the nuclear pore complex, the lamina, centrosomes and evidence for prokaryotic origins of relevant players.
11 LIMITING react this is the answer