Answer
Find out the original side length of the square .
To prove
Let us assume that the original length of the square be x.
Formula

As given
The dimensions of a square are altered so that 8 inches is added to one side while 3 inches is subtracted from the other.
Length becomes = x + 8
Breadth becomes = x -3
The area of the resulting rectangle is 126 in²
Put in the formula
(x + 8) × (x - 3) = 126
x² -3x + 8x -24 = 126
x ²+ 5x = 126 +24
x² + 5x - 150 = 0
x² + 15x - 10x - 150 = 0
x (x + 15) -10 (x +15) =0
(x + 15)(x -10) =0
Thus
x = -15 , 10
As x = -15 (Neglected this value because the side of the square cannot be negative.)
Therefore x = 10 inches be the original side of the square.
Let the age of Brandon be x.
Therefore the age of Michael is 4x
Also the age of Michael is 27+x
So
4x=27+x
3x=27
X=9
Brandon age is 9years while Michael's age is 36
Part A:
Let the length of one of the sides of the rectangle be L, then the length of the other side is obtained as follow.
Let the length of the other side be x, then

Thus, if the length of one of the side is x, the length of the other side is 8 - L.
Hence, the area of the rectangle in terms of L is given by

Part B:
To find the domain of A
Recall that the domain of a function is the set of values which can be assumed by the independent variable. In this case, the domain is the set of values that L can take.
Notice that the length of a side of a rectangle cannot be negative or 0, thus L cannot be 8 as 8 - 8 = 0 or any number greater than 8.
Hence the domain of the area are the set of values between 0 and 8 not inclusive.
Therefore,
The area of a Square is 144 because 12x12 is 144 and if both sides are 12 then that equals 144.
Hope this helps!
Answer:
The definition of a linear equation is an algebraic equation in which each term has an exponent of one and the graphing of the equation results in a straight line
Step-by-step explanation:
u single?