The energy transferred to the spring is given by:

where
k is the spring constant
x is the elongation of the spring with respect its initial length
Let's convert the data into the SI units:


so now we can use these data inside the equation ,to find the energy transferred to the spring:
I believe you are correct, it is B: Diagnostic Services.
Diagnostic services are services like the staff at hospitals and the people who run machines that are related to medical needs.
<em>If this is incorrect, please, don't refrain to tell me.</em>
Answer:
Explanation:
Given
winning car accelerates with a and its final velocity is v
considering they both start from rest
time taken by winning car is
v=u+at
where u=initial velocity
a=acceleration
t=time


Now loosing car is accelerating with 
Distance traveled by loosing car in time t



Thus distance d traveled by loosing car is given by 
Answer:
(A) 0.2306 m
(B) 1.467 Hz
(C) 0.1152 m
Explanation:
spring constant (K) = 16.4 N/m
mass (m) = 0.193 kg
acceleration due to gravity (g) = 9.8 m/s^{2}
(A) force = Kx, where x = extension
mg = Kx
0.193 x 9.8 = 16.4x
x = 0.1153 m
now the mass actually falls two times this value before it gets to its equilibrium position ( turning point ) and oscillates about this point
therefore
2x = 0.2306 m
(B) frequency (f) = \frac{1}{2π} x 
frequency (f) = \frac{1}{2π} x 
frequency = 1.467 Hz
(C) the amplitude is the maximum position of the mass from the equilibrium position, which is half the distance the mass falls below the initial length of the spring
= \frac{0.2306}{2} = 0.1152 m