Answer:


Explanation:
<u>Given Data:</u>
Weight = W = 65 N
Height = h = 2 m
Time = t = 4 secs
<u>Required:</u>
Power = P = ?
Work Done in the form of Potential Energy = P.E. = ?
<u>Formula:</u>
P.E. = Wh
P = P.E. / t
<u>Solution:</u>
P.E. = (65)(2)
P.E = 130 Joules
P = P.E. / t
P = 130 / 4
P = 32.5 Watts
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807 </h3>
Answer:
a. The thickness of the wire is 2.5 mm.
b. The wire is 0.25 cm thick.
Explanation:
Number of turns of the wire = 10
The length of total turns = 25 mm
a. The thickness of the wire can be determined by;
thickness of the wire = 
= 
= 2.5 mm
Therefore, the wire is 2.5 mm thick.
b. To determine the thickness of the wire in centimetre;
10 mm = 1 cm
So that,
2.5 mm = x
x = 
= 0.25 cm
The wire is 0.25 cm thick.
¡Hellow!
For this problem, first, lets convert the seconds in hours:
5,4x10³
5400
h = sec / 3600
h = 5400 s / 3600
h = 1,5
Let's recabe information:
d (Distance) = 386 km
t (Time) = 1,5 h
v (Velocity) = ?
For calculate velocity, let's applicate formula:

Reeplace according we information:
386 km = v * 1,5 h
v = 386 km / 1,5 h
v = 257,33 km/h
The velocity of the train is of <u>257,33 kilometers for hour.</u>
<u></u>
Extra:
For convert km/h to m/s, we divide the velocity of km/h for 3,6:
m/s = km/h / 3,6
Let's reeplace:
m/s = 257,33 km/h / 3,6
m/s = 71,48
¿Good Luck?
The only thing we know of so far that can shift light to longer wavelengths is the "Doppler" effect. If the source and the observer are moving apart, then the observer sees wavelengths that are longer than they should be. If the source and the observer are moving toward each other, then the observer sees wavelengths that are shorter than they should be. It works for ANY wave ... sound, light, water etc. The trick is to know what the wavelength SHOULD be. If you know that, then you can tell whether you and the source are moving together or apart, and you can even tell how fast. If the lines in a star"s spectrum are at wavelengths that are too long, then from everything we know right now, the star and Earth are moving apart.
I believe you got it correct already