1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kobotan [32]
3 years ago
8

What is the value of g(-4)?

Mathematics
2 answers:
vazorg [7]3 years ago
6 0

Answer:

A

Step-by-step explanation:

(because -4 is equal to -4 and meets the condition of the top inequality, you plug in -4 into the top function)

g(-4)=\sqrt[3]{(-4)+5}\\\\g(-4)=\sqrt[3]{1} =1

mixas84 [53]3 years ago
4 0
The value of g(-4) is A. 1
You might be interested in
Explain how to derive a formula for sin(A - B + C)
Akimi4 [234]

\textit{Sum and Difference Identities} \\\\ sin(\alpha - \beta)=sin(\alpha)cos(\beta)- cos(\alpha)sin(\beta) \\\\ cos(\alpha - \beta)= cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ sin(A-B+C)\implies sin[~(\stackrel{Z}{A-B})~+C]\implies sin(Z+C) \\\\\\ sin(Z)cos(C)+cos(Z)sin(C)\implies sin(A-B)cos(C)+cos(A-B)sin(C) \\\\[-0.35em] ~\dotfill\\\\ \textit{and since we know that}\\\\ sin(A-B)\implies sin(A)cos(B)-cos(A)sin(B)

cos(A-B)\implies cos(A)cos(B)+sin(A)sin(B)\\\\ then \\\\[-0.35em] ~\dotfill\\\\\ [sin(A)cos(B)-cos(A)sin(B)]cos(C)+[cos(A)cos(B)+sin(A)sin(B)]sin(C) \\\\\\ ~\hfill \begin{array}{cllll} sin(A)cos(B)cos(C)-cos(A)sin(B)cos(C)\\\\ +\\\\ cos(A)cos(B)sin(C)+sin(A)sin(B)sin(C) \end{array}~\hfill

6 0
2 years ago
When completely factored, x^2 + x - 6 is equivalent to which of the following? A. (x + 1)(x – 6) B. (x + 3)(x – 2) C. (x + 6)(x
Mariana [72]
X^2+x-6

x^2-2x+3x-6

x(x-2)+3(x-2)

(x+3)(x-2)

5 0
4 years ago
3. for each item, decide whether or not the given expression is defined. for each item that is defined, compute the result. (a)
Sati [7]

The results of given matrices can be obtained using matrix multiplication.

<h3>Find the results of the given matrices:</h3>

Here in the question it is given that,

A =  \left[\begin{array}{ccc}1&-1&2\\3&1&4\end{array}\right], B = \left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right], C = \left[\begin{array}{ccc}1\\-1\\2\end{array}\right], D = \left[\begin{array}{ccc}2&-2&3\end{array}\right],

E =\left[\begin{array}{ccc}2-i&1+i\\-i&2+4i\end{array}\right], F = \left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]

We have to find AB, BC, CA, CD, C^{T} A^{T}, F², BD^{T}, A^{T} A and FE.

  • AB = \left[\begin{array}{ccc}1&-1&2\\3&1&4\end{array}\right]\left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right]

a₁₁ = 1×2 + (-1)×5 + 2×4 = 5, a₁₂ = 1×(-1) + (-1)×1 + 2×6 = 10, a₁₃ = 1×3 + (-1)×2 + 2×(-2) = -3, a₂₁ = 3×2 + 1×5 + 4×4 = 27, a₂₂ = 3×(-1) + 1×1 + 4×6 = 22, a₂₃ = 3×3 + 1×2 + 4×(-2) = 3

AB = \left[\begin{array}{ccc}5&10&-3\\27&22&3\end{array}\right]  

  • BC =  \left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right]   \left[\begin{array}{ccc}1\\-1\\2\end{array}\right]

a₁₁ = 2×1 + (-1)×(-1) + 3×2 = 9, a₂₁ = 5×1 + 1×(-1) + 2×2 = 8, a₃₁ = 4×1 + 6×(-1) + (-2)×2 = -6      

BC  = \left[\begin{array}{ccc}9\\8\\-6\end{array}\right]

  • CA, CA is not defined since dimension of the matrices are 3×1 and 2×3  
  • A^{T}E = \left[\begin{array}{ccc}1&3\\-1&1\\2&4\end{array}\right]\left[\begin{array}{ccc}2-i&1+i\\-i&2+4i\end{array}\right]

a₁₁ = 1×(2-i) + 3×(-i) = 2-4i, a₁₂ = 1x(1+i) +  3×(2+4i) = 7+13i, a₂₁ = -1×(2-i) + 1×(-i) = -2, a₂₂ = -1×(1+i) + 1×(2+4i) = 1+3i, a₃₁ = 2×(2-i) + 4×(-i) = 4-6i, a₃₂ = 2×(1+i) + 4×(2+4i) = 10+18i  

A^{T}E = \left[\begin{array}{ccc}2-4i&7+13i\\-2&1+3i\\4-6i&10+18i\end{array}\right]

  • CD = \left[\begin{array}{ccc}1\\-1\\2\end{array}\right]   \left[\begin{array}{ccc}2&-2&3\end{array}\right]

a₁₁ = 1×2 = 2, a₁₂ = 1×(-2) = -2, a₁₃ = 1×3 = 3, a₂₁ = -1×2 = -2, a₂₂ = -1×(-2) = 2, a₂₃ = -1×3 = -3,a₃₁= 2×2 = 4, a₃₂ = 2×(-2) = -4, a₃₃ = 2×3 = 6

CD = \left[\begin{array}{ccc}2&-2&3\\-2&2&-3\\4&-4&6\end{array}\right]

  • C^{T} A^{T} =\left[\begin{array}{ccc}1&-1&2\end{array}\right]\left[\begin{array}{ccc}1&3\\-1&1\\2&4\end{array}\right]

a₁₁ = 1×1 + (-1)×(-1) + 2×2 = 6, a₁₂ = 1×3 + (-1)×1 + 2×4 = 10

C^{T}A^{T}=\left[\begin{array}{ccc}6&10\end{array}\right]

  • F² = \left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]\left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]

a₁₁ = i×i + (1-3i)×0 = -1,a₁₂ = i×(1-3i) + (1-3i)×(4+i) = 10-10i, a₂₁= 0×i + (4+i)×0 = 0, a₂₂ = 0×(1-3i) + (4+i)×(4+i) = 15+8i

F² = \left[\begin{array}{ccc}-1&10-10i\\0&15+8i\end{array}\right]

  • BD^{T}=\left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right]\left[\begin{array}{ccc}2\\-2\\3\end{array}\right]

a₁₁ = 2×2 + (-1)×(-2) + 3×3 = 15, a₂₁ = 5×2 + 1×(-2) + 2×3 = 14, a₃₁ = 4×2 + 6×(-2) + (-2)×3 = -10

BD^{T}= \left[\begin{array}{ccc}15\\14\\-10\end{array}\right]

  • A^{T} A=\left[\begin{array}{ccc}1&3\\-1&1\\2&4\end{array}\right] \left[\begin{array}{ccc}1&-1&2\\3&1&4\end{array}\right]

a₁₁ = 1×1 + 3×3 = 10, a₁₂ = 1×(-1) + 3×1 = 2, a₁₃ = 1×2 + 3×4 = 14, a₂₁ = -1×1 + 1×3 = 2, a₂₂ = -1×(-1) + 1×1 = 2, a₂₃ = -1×2 + 1×4 = 2, a₃₁ = 2×1 + 4×3 = 14, a₃₂ = 2×(-1) + 4×1 = 2, a₃₃ = 2×2 + 4×4 = 20

A^{T} A=\left[\begin{array}{ccc}10&2&14\\2&2&2\\14&2&20\end{array}\right]

  • FE =  \left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]   \left[\begin{array}{ccc}2-i&1+i\\-i&2+4i\end{array}\right]

a₁₁ = i×(2-i) + (1-3i)×(-i) = -2+i, a₁₂ = i×(1+i) + (1-3i)×(2+4i) = 13-i, a₂₁ = 0×(2-i) + (4+i)×(-i) = 1-4i, a₂₂ = 0×(1+i) + (4+i)×(2+4i) = 4+18i

FE = \left[\begin{array}{ccc}-2+i&13-i\\1-4i&4+18i\end{array}\right]

Hence we can obtain the results of the required matrices using matrix multiplication.

Disclaimer: The question was given incomplete on the portal. Here is the complete question.

Question: Let A =  \left[\begin{array}{ccc}1&-1&2\\3&1&4\end{array}\right], B = \left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right], C = \left[\begin{array}{ccc}1\\-1\\2\end{array}\right],                              D = \left[\begin{array}{ccc}2&-2&3\end{array}\right], E =\left[\begin{array}{ccc}2-i&1+i\\-i&2+4i\end{array}\right], F = \left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]

For each item, decide whether or not the given expression is defined. for each item that is defined, compute the result.

AB, BC, CA, CD, C^{T} A^{T}, F², BD^{T}, A^{T} A and FE

Learn more about matrix here:

brainly.com/question/28180105

#SPJ4

8 0
2 years ago
The sum of a number times 7 and 30 is at most -24
NARA [144]

Answer:

x•7+30=-24

Step-by-step explanation:

This might be your answer, if not please comment and let me know what it really was! Thanks!

7 0
3 years ago
Please, help me. I'LL GIVE BRAINLIEST.
Anni [7]
X= -18 (negative eighteen)
7 0
3 years ago
Read 2 more answers
Other questions:
  • Harper uploaded a funny video of her dog onto a website.
    12·1 answer
  • Write an equation in slope-intercept form of the line having the given slope and y-intercept.
    11·1 answer
  • It took Kenny 3/4 of an hour to ride his bike from school to the park. Then it took Kenny 1 2/3 hours to ride from the park to h
    5·1 answer
  • How many miles can a horse travel in 4 hours
    13·1 answer
  • Please help stuck on geometry test!!!
    14·1 answer
  • Starting from the same place, Sara walks due west and Ammad walks due east. On the number line, 0 represents their starting poin
    10·2 answers
  • Ronald is preparing lemonade for his friends. To make 6 cups of lemonade, he needs 1 cup of lemon juice. To make 24 cups of lemo
    5·2 answers
  • Is 4/3 and 8/6 a proportion
    8·2 answers
  • Quickly answer number 10 text only no fonts (100 points) mark brainliest
    12·1 answer
  • Can someone please help me solve the following? 2-(-2)³+(-4/2)³
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!