Answer:
25% heterozygous tall
Explanation:
If we take the F1 generation as parents and let them self-fertilise, we have 4 crosses.
The first one for homozygous tall, then we have 100% AA.
The second and third one for heterozygous tall and we have 25% AA, 50%Aa and 25%aa for each of them.
The last one would be for dwarf, and we'll have 100%aa.
Adding all of them, we'll have
AA = 100 + 25 + 25 = 150%
Aa = 50+50 = 100%
aa = 100 + 25 + 25 = 150%
as we had 4 crosses, so dividing the total percentages by 4, we'll have,
AA = 37.5%
Aa = 25%
aa = 37.5%
:. The percentage of heterozygous tall would be 25%.
Hope it helps:)
Basilar membranes
In an active cochlea, basilar membranes vibrate more strongly than in a dead cochlea. because all of the outer hair cells slant significantly and alter in length in response to sound. In response to basilar membrane changes, outer hair cells swell and contract. The frequency tuning curve is impacted by damage to the outer hair cells.
<h3>What are the function of Basilar membranes?</h3>
The basilar membrane is the inner ear's primary mechanical component. Over its length, it has graded mass and stiffness characteristics, and its vibration patterns separate incoming sound into its component frequencies, which trigger various cochlear areas.
Impact do outer hair cells have on our hearing :
As a nonlinear amplifier that enables the cochlea to detect sounds with great sensitivity and accuracy, outer hair cells (OHCs) play a crucial role in hearing. These distortion products can be monitored as distortion-product otoacoustic emissions as a result of the nonlinear sound processing (DPOAEs)
To learn more about Basilar membranes visit:
brainly.com/question/28074500
#SPJ4
Answer:
BOTONY:
any of the minute pores in the epidermis of the leaf or stem of a plant, forming a slit of variable width which allows movement of gases in and out of the intercellular spaces.
MEDICINE
:
an artificial opening made into a hollow organ, especially one on the surface of the body leading to the gut or trachea.
Explanation:
Crossing over (exchange of genetic information between regions of non-sister chromatids in the tetrad) occurs in the prophase I stage of meiosis.
<h3>WHAT IS MEIOSIS?</h3>
Meiosis is the process whereby a single cell produces four daughter cells that are genetically different from one another.
Meiosis is able to ensure genetic diversity in the daughter cells due to a process called Crossing over.
Crossing over is the exchange of genetic material between the non-sister chromatids of homologous chromosomes. It occurs in the prophase I stage of meiosis.
Therefore, crossing over (exchange of genetic information between regions of non-sister chromatids in the tetrad) occurs in the prophase I stage of meiosis.
Learn more about crossing over at: brainly.com/question/394891
I believe the correct answer is B