Answer:
It is direct proportionality. The greater the mass, the greater is the gravitational potential energy. The equation for GPE is : GPE = mgh, where m is the mass, g is the acceleration due to gravity, and h is the height above the ground. As you can see GPE is directly proportional to mass, and height. KT.
Explanation:
Gravitational potential energy is a function of both the mass of your system and the mass of the thing generating the gravity field around your system.
The relationship is linear, which means that if you multiply or divide one of the masses by some number but leave everything else the same, you multiply or divide the potential energy by the same number. A 3kg mass has three times the gravitation potential energy of a 1kg mass, if placed in the same location.
Answer:
v(t)= (d/dt)x(t)
Explanation:
The instantaneous velocity of an object is the limit of the average velocity as the elapsed time approaches zero, or the derivative of x with respect to t. Like average velocity, instantaneous velocity is a vector with dimension of length per time. The instantaneous velocity at a specific time point t
0 is the rate of change of the position function, which is the slope of the position function
x
(
t
)
at t
0
.
Answer:

Explanation:
From the question we are told that:
Acceleration 
Displacement 
Initial time 
Final Time 
Generally the equation for Velocity of 1.05 travel is mathematically given by
Using Newton's Law of Motion



Generally the equation for Distance traveled before stop is mathematically given by



Generally the equation for Distance to stop is mathematically given by
Since For this Final section
Final velocity 
Initial velocity 
Therefore
Using Newton's Law of Motion


Giving

Therefore



Generally the Total Distance Traveled is mathematically given by


