1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
almond37 [142]
3 years ago
11

Kevin Chamberlin?...........​

Mathematics
1 answer:
loris [4]3 years ago
6 0

Answer:

Yeah thats weird

Step-by-step explanation:

You might be interested in
What is the maximum number of possible extreme values for the function,
Len [333]
It is B4 so i know it is
6 0
3 years ago
Read 2 more answers
(2/5 - 1/10) + 2^3 - 23/25<br> A) 1 12/25<br> B) 2 2/5<br> C) 3 8/25<br> D) 4 3/5
alex41 [277]

Answer:

I think it's A I'm not to sure

7 0
3 years ago
Read 2 more answers
3 to the 4 * 3 the the 2 * 3 the 3
Nezavi [6.7K]

Answer:

  3^9 = 19,683

Step-by-step explanation:

The applicable rule of exponents is ...

  (a^b)(a^c) = a^(b+c)

__

Then the expression evaluates to ...

  3^4 × 3^2 × 3^3 = 3^(4+2+3) = 3^9 = 19683

6 0
3 years ago
Simplify fully<br> x2 - 9<br> 3x2 + 8x - 3<br> +<br> X-3<br> x+2
bulgar [2K]

(-3x³+2x²+4x+24) (x-2)

---------------------------------

8x

6 0
3 years ago
Prove that:
Lorico [155]
A.)

   \csc^2(x) \tan^2 (x)- 1 = \tan^2(x)

Use the identities \csc x = 1 / \sin x and \tan x = \sin x / \cos x on the left-hand side

   \begin{aligned}&#10;\text{LHS} &= \csc^2(x) \tan^2 (x)- 1 \\&#10;&= \frac{1}{\sin^2 (x)} \cdot \frac{\sin^2 (x)}{\cos^2 (x)} - 1 \\&#10;&= \frac{1}{\cos^2 (x)} - 1&#10;\end{aligned}

Make 1 have a common denominator to allow for fraction subtraction
Multiply the numerator and denominator of 1 by cos^2 x

   \begin{aligned} \text{LHS} &= \frac{1}{\cos^2 (x)} - 1 \cdot \tfrac{\cos^2 (x)}{\cos^2 (x)}  \\&#10;&=  \frac{1}{\cos^2 (x)} - \frac{\cos^2 (x)}{\cos^2 (x)} \\&#10;&=  \frac{1 - \cos^2 x}{\cos^2 (x)}&#10;\end{aligned}

Use Pythagorean identity for the numerator.

If \sin^2 (x) + \cos^2(x) = 1 then subtracting both sides by \cos^2 (x) yields \sin^2(x) = 1 - \cos^2(x). We can substitute that into the numerator

   \begin{aligned} \text{LHS} &= \frac{1 - \cos^2 (x)}{\cos^2 (x)} \\&#10;&= \frac{\sin^2 (x)}{\cos^2 (x)} \\&#10;&= \tan^2 (x) && \text{Since } \tan x = \tfrac{\sin x }{\cos x} \\&#10;&= \text{RHS}&#10;\end{aligned}

======

b.)

   \dfrac{\sec(x)}{\cos(x)} - \dfrac{\tan(x)}{\cot(x)} = 1

For the left-hand side:
By definition, \sec(x) = 1/\cos(x) and \tan (x) = 1/\cot (x)

   \begin{aligned}&#10;\text{LHS} &= \dfrac{\sec(x)}{\cos(x)} - \dfrac{\tan(x)}{\cot(x)}  \\&#10;&= \dfrac{ \frac{1}{\cos(x)} }{\cos(x)} - \dfrac{\frac{1}{\cot(x)}}{\cot(x)} \\&#10;&= \frac{1}{\cos^2 (x)} - \frac{1}{\cot^2(x)} &#10;\end{aligned}

Since \cot (x) = \cos (x) / \sin (x)

   \begin{aligned} \text{LHS} &= \frac{1}{\cos^2 (x)} - \frac{1}{\frac{\cos^2(x)}{\sin^2(x)} } \\ &= \frac{1}{\cos^2 (x)} -\frac{\sin^2(x)}{\cos^2(x)} \\ &= \frac{1 - \sin^2(x)}{\cos^2 (x)} \end{aligned}

Using Pythagorean identity, \cos^2(x) = 1 - \sin^2(x) so

   \begin{aligned} \text{LHS} &= \frac{\cos^2(x)}{\cos^2 (x)} \\&#10;&= 1 \\&#10;&= \text{RHS}&#10;\end{aligned}

6 0
3 years ago
Other questions:
  • What is the equation for the line?<br><br> Enter your answer in the box.
    14·1 answer
  • The product of any two rational numbers is a rational number. True or false
    12·2 answers
  • Distance = 60 km time = 4 h rate=?
    7·1 answer
  • I need help with this please
    12·1 answer
  • Fill in the blank to make a perfect square y^2+12y+?
    6·2 answers
  • Translations, reflections, and rotations produce a figure that is _________ to the original figure.
    6·1 answer
  • A and B are independent events. Find P(A and B).
    9·1 answer
  • Pascale leaves the office to go home. She walks 12 blocks due north and then 9 blocks due west. How far is she from the office?
    10·2 answers
  • Pls help asap! Will give brainliest
    10·2 answers
  • The diameter of a circle is 14 miles. What is the circle's area?<br> Use 3.14 for ​.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!