I cannot reach a meaningful solution from the given information. To prove that S was always true, you would have to prove that N was always false. To prove that N was always false you would have to prove that L was always false. For the statement (L ^ T) -> K to be true, you only need K to be true, so L can be either true or false.
Therefore, because of the aforementioned knowledge, I do not believe that you can prove S to be true.
The answer is
3 divided by 2
Hope this helped
Answer:
Each student gets 2 1/3
Step-by-step explanation:
So you would divide 7 by 3, which you can't...so 6 divided by 3 is 2, and when you split the last one into thirds you can each have 1/3. Add the sections together, and each person gets 2 1/3
The lengths of sides of a triangle have to satisfy the triangle inequality, which states that the sum of the two shorter sides must exceed the length of the third side.
Here 9+8=17 (not greater), so these segments do not form a triangle.
By geometric and algebraic properties the angles BTC, TBC and TBC from the triangle BTC are 128°, 26° and 26°, respectively.
<h3>How to determine the angles of a triangle inscribed in a circle</h3>
According to the figure, the triangle BTC is inscribed in the circle by two points (B, C). In this question we must make use of concepts of diameter and triangles to determine all missing angles.
Since AT and BT represent the radii of the circle, then the triangle ABT is an <em>isosceles</em> triangle. By geometry we know that the sum of <em>internal</em> angles of a triangle equals 180°. Hence, the measure of the angles A and B is 64°.
The angles ATB and BTC are <em>supplmentary</em> and therefore the measure of the latter is 128°. The triangle BTC is also an <em>isosceles</em> triangle and the measure of angles TBC and TCB is 26°.
By geometric and algebraic properties the angles BTC, TBC and TBC from the triangle BTC are 128°, 26° and 26°, respectively.
To learn more on triangles, we kindly invite to check this verified question: brainly.com/question/2773823