Answer:
3 and 4
Step-by-step explanation:
Well to start we have to know that they are asking us, a factorized form of a quadratic expression
a quadratic expression is of the form
ax ^ 2 + bx + c
Now the factored form is as follows
a ( x - x1 ) ( x - x2 )
Next, let's look at each of the options
In this case we lack a term with x since if we solve we have a linear equation
1. 5(x+9)
5x + 45
In this case if we pay attention they are being subtracted instead of multiplying, so we will not get a quadratic function
2. (x+4) - (x+6)
-2
In this case we have everything we need, now let's try to solve
3. (x-1) (x-1)
x^2 - x - x + 1
x^2 - 2x + 1 quadratic function
In this case we have everything we need, now let's try to solve
4. (x-3) (x+2)
x^2 -3x +2x -6
x^2 -x - 6 quadratic function
In this case we have a quadratic function but we do not have it in its factored form since we can observe the x ^ 2
5. x^2 + 8x
Answer:
-8x-4 is the answer using distributive property.
Answer:
Tony can buy three games with his savings over two months and Alice can buy six concert tickets.
Step-by-step explanation:
Over two months, Tony has watched a total of 53.6 hours of television (35.4 + 18.2). If he save $2.50 for each hour, we can multiply his total hours by the amount per hour, or 53.6 x 2.50 = $134.00. Since each game that Tony wants to buy costs $35.75, we need to divide his total savings by the cost of each game, or 134/35.75 = 3.75. Since Tony can't buy a portion of the game, the most amount of games he can buy is 3. Alice watched a total of 48.4 hours of television (21.8 + 26.6). If she also saves $2.50 per hour, then her total savings is 2.50 x 48.4 = $121.00. Since her concert tickets are $17.50 a piece, we divide her total savings: 121/17.50 = 6.9. Alice can also not buy a partial ticket, so the total amount she can buy is 6.
set h=0 and solve for <span>t
</span>So: 0 = 32t - 16^2
<span>32t−16<span>t2</span>=0</span><span>16t(2−t)=0</span><span><span>t=2
</span></span>
Hey!
In order to simplify this equation, we'll first have to multiply both sides of the equation by v. This will give us v on its own.
<em>Original Equation :</em>

<em>New Equation {Added Multiply Both Sides by V} :</em>

<em>Solution {New Equation Solved} :</em>

Now we'll switch sides to get v on the left side of the equation which is generally where we always want the variables to be located in these types of equations.
<em>Old Equation :</em>

<em>New Equation {Switched} :</em>

Now we'll divide both sides by v to get v on its own.
<em>Old Equation :</em>

<em>New Equation {Added Divide Both Sides by V} :</em>

<em>Solution {New Equation Solved} :</em>

<em>So, this means that in the equation

,</em>

.
Hope this helps!
- Lindsey Frazier ♥