Answer:
a. neutral
b. salts
c. salt
Explanation:
Organic salts are a dense number of ionic compounds with innumerable characteristics. They are previously derived from an organic compound, which has undergone a transformation that allows it to be a carrier of a charge, and that in addition, its chemical identity depends on the associated ion.
Organic salts are usually stronger acids or bases than inorganic salts. This is because, for example, in the amine salts, it has a positive charge due to its bond with an additional hydrogen: A + -H. Then, in contact with a base, donate the proton to be a neutral compound again
RA + H + B => RA + HB
H belongs to A, but it is written as it is involved in the neutralization reaction.
On the other hand, RA + can be a large molecule, unable to form solids with a crystalline network stable enough with the hydroxyl anion or oxyhydrile OH–.
When this is so, salt RA + OH– behaves as a strong base; even as basic as NaOH or KOH
Answer:
work out if it's either going to sink or float
Explanation:
this can be carried out by calculating the numbers
Explanation:
Salts are the solutes in an aqueous solution. An aqueous solution is solution whose solvent water.
- To form a solution,a solute must be dissolved in a solvent.
- For aqueous solutions, the solvent which is the dissolving medium is made up of water.
- The solute is the substance that is dissolved in it.
- Salts for example can be a solute in an aqueous solution.
- A salt is generally an ionic compound consisting of positive ions such as metallic, ammonium ans complex ions and negative ions such as acid radicals and complex ions.
Learn more:
Aqueous solution brainly.com/question/8426727
#learnwithBrainly
Answer:
CaCO3
Explanation:
The molecule is formed by the calcium cation Ca+2 and the carbonate anion CO3−2.
The reaction between mercury (Hg) and sulfur (S) to form HgS is:
Hg + S ------------- HgS
Therefore: 1 mole of Hg reacts with 1 mole of S to form 1 mole of HgS
The given mass of Hg = 246 g
Atomic mass of Hg = 200.59 g/mol
# moles of Hg = 246 g/ 200.59 gmol-1 = 1.226 moles
Based on the reaction stoichiometry,
# moles of S that would react = 1.226 moles
Atomic mass of S = 32 g/mol
Therefore, mass of S = 1.226 moles*32 g/mole = 39.23 g
39.2 g of sulfur would be needed to react completely with 246 g of Hg to produce HgS