The correct answer is Be+
That is because it lost a single electron but still has the same number of protons, and thus the effective charge attracting each electron is greater, which in turn makes the radius even smaller
Answer:
Spectroscopy
Explanation:
They can determine its composition based on these wavelengths. The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy
Answer:
The answer is
<h2>250 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of object = 25 mL
Density = 10 g/mL
The mass of the object is
mass = 25 × 10
We have the final answer as
<h3>250 g</h3>
Hope this helps you
Answer:
in prism
it's from the rectangular reflecting surface
Answer:
2PO₄³⁻ + 3Fe²⁺ → Fe₃(PO₄)₂(s)
Explanation:
In a net ionic equation you list <em>only the ions that are participating in the reaction. </em>
When potassium phosphate, K₃PO₄, reacts with iron (II) nitrate, Fe(NO₃)₂ producing iron (II) phosphate, Fe₃(PO₄)₂ that is an insoluble salt. The reaction is:
2K₃PO₄ + 3 Fe(NO₃)₂ → Fe₃(PO₄)₂(s) + 6NO₃⁻ + 6K⁺
The ionic equation is:
6K⁺ + 2PO₄³⁻ + 3Fe²⁺ + 6NO₃⁻→ Fe₃(PO₄)₂(s) + 6NO₃⁻ + 6K⁺
Subtracting the K⁺ and NO₃⁻ ions that are not participating in the reaction, the net ionic equation is:
<h3>2PO₄³⁻ + 3Fe²⁺ → Fe₃(PO₄)₂(s)</h3>