1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bonufazy [111]
3 years ago
9

2) The area of a rectangular pool is 1260 ft. Find the dimensions of the rectangle, if one

Mathematics
1 answer:
artcher [175]3 years ago
5 0
Two equations

W*L=1260

3W+48=L

Solve

L=1260/W

3W+48=1260/W

3W^2+48W=1260

3W^2+48W-1260=0

Divide by 3

W^2+16W-420=0

Factor

(W-14) (W+30)

W=14

L=90





You might be interested in
How do you find the product of -9over5 times 5over 3? please help.
Inessa [10]
Here look at this for my answer...

3 0
3 years ago
All of the functions shown below are either exponential growth or decay functions.
AlekseyPX

Answer:

Step-by-step explanation:

If an exponential function is in the form of y = a(b)ˣ,

a = Initial quantity

b = Growth factor

x = Duration

Condition for exponential growth → b > 1

Condition for exponential decay → 0 < b < 1

Now we ca apply this condition in the given functions,

1). y=3.2(1+0.45)^{2x}

   Here, (1 + 0.45) = 1.45 > 1

   Therefore, It's an exponential growth.

2). y=(0.85)^{3x}

    Here, (0.85) is between 0 and 1,

    Therefore, it's an exponential decay.

3). y = (1 - 0.03)ˣ + 4

    Here, (1 - 0.03) = 0.97

    And 0 < 0.97 < 1

    Therefore, It's an exponential decay.

4). y = 0.5(1.2)ˣ + 2

    Here, 1.2 > 1

    Therefore, it's an exponential growth.

5 0
3 years ago
Please help!
nasty-shy [4]
Right change flip it's simple
4 0
3 years ago
#2 Find the segment length indicated. Assume that lines which appear to be tangent are tangent. *
gregori [183]

The angle of a tangent and a radius is a right angle.

The missing length would be the hypotenuse. Use the Pythagorean theorem to solve.

X = SQRT(12^2 + 16^2)

X = SQRT(144 + 256)

x = SQRT(400)

X = 20

4 0
3 years ago
In a group of 10 ​kittens, 5 are female. Two kittens are chosen at random. ​a) Create a probability model for the number of male
olya-2409 [2.1K]

Answer:

(b) Expected number of male kitten E(x) = 1

(c) Standard deviation is ±\frac{2}{3}.

Step-by-step explanation:

Given that,

Number of kittens in a group are 10. Out of these 5 are female.

To find:- (a) create a probability model of male kitten chosen.

    So,  total number of kitten = 10

           number of female kitten = 5    

then, Number of male kitten = 10-5= 5

Now total number of ways to choosing two kittens from group of 10 = ^{10} C_{2}

                                                                                                                 = \frac{10!}{2!\times8!}

                                                                                                                 = 45

for choosing (i) No male P(x=0) = P(Two female) =  \frac{^{5} C_{2}}{45}

                                                                           = \frac{2}{9}

                     (ii) 1 male P(x=1) = P(1 male and 1 female) = \frac{^{5} C_{1}\times^{5} C_{1}}{45} =  \frac{25}{45} =\frac{5}{9}

                     (iii) 2 male P(x=2)= P(2 male) =\frac{^{5} C_{2}}{45} =  \frac{2}{9}

      x_{i}                             0                     1                      2

P(X=x_{i})                           \frac{2}{9}                      \frac{5}{9}                      \frac{2}{9}

(b) what is expected number of male kittens chosen ?

    Expected number of male kitten E(x) =  o\times \frac{2}{9} + 1\times \frac{5}{9} + 2\times\frac{2}{9}

                                                                  = 1

(c) what is standard deviation ?

                              \sigma(x) = \sqrt{ (E(x^{2} )-(Ex)^{2})

No,                          

                               Ex^{2} =o\times \frac{2}{9} + 1\times \frac{5}{9} + 4\times\frac{2}{9}

                                       = \frac{13}{9}

                               \sigma(x)=\sqrt{\frac{13}{9} - 1 }=\sqrt{\frac{4}{9} }  

                                       = ± \frac{2}{3}

                               

6 0
3 years ago
Other questions:
  • A restraint has one type of lemonade that is 12% sugar and another that is 7% sugar. How many gallons of each type does the rest
    12·1 answer
  • Write an algebraic expression for the word phrase 9 less than half a number
    5·1 answer
  • What is 3 1/18 as a decimal
    10·1 answer
  • This figure is made up of a rectangle and
    15·1 answer
  • What are the measures of angles M and N?<br> m m m m &lt; M = 119° and m
    9·1 answer
  • Hjhhbhjdjjdjdjjsjejsjsi
    12·1 answer
  • Which is a unit rate?
    7·1 answer
  • Can someone please help me with 44. And 45?
    11·2 answers
  • What number sequence is in the 3rd period of 23,504,009?
    10·1 answer
  • COS(60°) what is the answer
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!