Answer:
See explanation
Explanation:
The magnitude of electronegativity difference between atoms in a bond determines whether that bond will be polar or not.
If the electronegativity difference between atoms in a bond is about 1.7, the bond is ionic. If the electronegativity difference is greater than 0.4 and less than 1.7, the bond will have a polar covalent character. Lastly, if the electronegativity difference between the bond is less than or equal to 0.4, the covalent bond is non polar.
The electronegativity difference between carbon and hydrogen is about 0.4 which corresponds to a nonpolar covalent bond hence the molecule is nonpolar.
The electronegativity difference between carbon and fluorine is about 1.5 indicating a highly polar bond. This gives CH3F an overall dipole moment thereby making the molecule polar.
Answer:
This question appear incomplete
Explanation:
This question appear incomplete. However, fuel is formed through a natural phenomenon involving the conversion of large amount dead and decayed organisms (usually algae and zooplanktons) to combustible fuel through exposure to relatively high temperature and pressure (over millions of years) in the earth's crust. Thus, since this involves a sort of absorption of heat energy (from the earth's crust), it can be referred to be an endothermic reaction.
We have been given the condition that carbon makes up 35%
of the mass of the substance and the rest is made up of oxygen. With this, it
can be concluded that 65% of the substance is made up of oxygen. If we let x be
the mass of oxygen in the substance, the operation that would best represent
the scenario is,
<span> x = (0.65)(5.5 g)</span>
<span> <em> </em><span><em>x =
3.575 g</em></span></span>
Answer:
The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. ... Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field.
Explanation:
Answer:
Uracil
Explanation:
The base that will NOT combine with 2-deoxyribose to form a nucleic acid is Uracil.
2-deoxyribose is a pentose sugar found in the DNA (Deoxyribonucleic acid). It is devoid of oxygen in its 2' position. The bases found in DNA are Adenine, Guanine, Cytosine and Thymine. Adenine, Guanine, and Cytosine are also found in RNA (Ribonucleic acid). Thymine is not present in RNA, it is only found in DNA. The base found in RNA is Uracil which in turn is not present in DNA. The five carbon sugar present in RNA is ribose which combines with Uracil.