The rate at which the ice changes is -3/8 lb per hr
<h3>What is the rate the ice changes?</h3>
The given parameters are:
Changes =1 3/4 lb to 1/4 lb
Time = 1/4 hr.
The rate the ice changes is calculated as:
Rate = Change/Time
So, we have
Rate = (1/4 lb - 1 3/4 lb)/(1/4 hr)
Evaluate the difference
Rate = (-1 1/2 lb)/(1/4 hr)
Evaluate the quotient
Rate = -3/8 lb per hr
Hence, the rate at which the ice changes is -3/8 lb per hr
Read more about rates at:
brainly.com/question/19493296
#SPJ1
Answer: 178%
Step-by-step explanation:
1780/1000 = 178/100
For example fill ur bathtub full of water. then lay down in the tub the water leaving the tub is the force acting back.
20x^2+50 = -40x^2+110x [ Taking x as the unknown positive integer ]
Answer:
5 seconds
Step-by-step explanation:
Looking at your function (h(t) = -16t^2 + 48t + 160), I see that the peak height will be 196 feet, and that is achieved in 1.5 seconds.
h(1.5) = -16(1.5)^2 + 48(1.5) + 160
h(1.5) = -16(2.25)+ 48(1.5) + 160
h(1.5) = -36 + 48(1.5) + 160
h(1.5) = -36 + 72 + 160
h(1.5) = 36 + 160
h(1.5) = 196
Going down from that height, it would take 3.5 more seconds, so it would take 5 seconds in total
h(5) = -16(5)^2 + 48(5) + 160
h(5) = -16(25) + 48(5) + 160
h(5) = -400 + 48(5) + 160
h(5) = -400 + 240 + 160
h(5) = -400 + 400
h(5) = 0