Well 1/3 for savings means that you save 1/3*4500 or 1500 dollars.
You then have $3000 left. Of this if you spend 50% on food, you spend 0.5*3000 or 1500 dollars on food.
<span><span> x = -1/2 = -0.500
</span><span> x = 5/2 = 2.500
EITHER ONE WORKS</span></span>
Answer:
30 m
Step-by-step explanation:
You simply add the lengths of all the sides. 3 m is not needed for this.
Solve for <em>x</em> when √(<em>x</em> ² - 4) = 1 :
√(<em>x</em> ² - 4) = 1
<em>x</em> ² - 4 = 1
<em>x</em> ² = 5
<em>x</em> = ±√5
We're looking at <em>x </em>≤ 0, so we take the negative square root, <em>x</em> = -√5.
This means <em>f</em> (-√5) = 1, or in terms of the inverse of <em>f</em>, we have <em>f</em> ⁻¹(1) = -√5.
Now apply the inverse function theorem:
If <em>f(a)</em> = <em>b</em>, then (<em>f</em> ⁻¹)'(<em>b</em>) = 1 / <em>f '(a)</em>.
We have
<em>f(x)</em> = √(<em>x</em> ² - 4) → <em>f '(x)</em> = <em>x</em> / √(<em>x</em> ² - 4)
So if <em>a</em> = -√5 and <em>b</em> = 1, we get
(<em>f</em> ⁻¹)'(1) = 1 / <em>f '</em> (-√5)
(<em>f</em> ⁻¹)'(1) = √((-√5)² - 4) / (-√5) = -1/√5
The sign must be negative; see the attached plot, and take note of the negatively-sloped tangent line to the inverse of <em>f</em> at <em>x</em> = 1.
9514 1404 393
Answer:
- late only: 15
- extra-late only: 24
- one type: 43
- total trucks: 105
Step-by-step explanation:
It works well when making a Venn diagram to start in the middle (6 carried all three), then work out.
For example, if 10 carried early and extra-late, then only 10-6 = 4 of those trucks carried just early and extra-late.
Similarly, if 30 carried early and late, and 4 more carried only early and extra-late, then 38-30-4 = 4 carried only early. In the attached, the "only" numbers for a single type are circled, to differentiate them from the "total" numbers for that type.
__
a) 15 trucks carried only late
b) 24 trucks carried only extra late
c) 4+15+24 = 43 trucks carried only one type
d) 38+67+56 -30-28-10 +6 +6 = 105 trucks in all went out