Writing an equation is the easiest way to figure this out.
b = boys, g = girlsb = 3/4g35 students = g + b35 = g + 3/4g35 = 7/4g35/7/4 = g20 girls35 - 20 = b or 3/4(35) = b15 boys
Given :
Miki has 104 nickels and 88 dimes.
She wants to divide her coins into groups where each group has the same number of nickels and the same number of dimes.
To Find :
Largest number of groups she can have .
Solution :
In the given question we need to find the largest number of groups she can have i.e we have to find the LCM of 104 and 88 .
Now , factorizing both of them , we get :

Form above , we can say that common factors are :

Therefore , the largest number of groups she can have is 8 .
Hence , this is the required solution .
Answer: Hope this helps :D
the answer is 300000 cm3
Step-by-step explanation:
Use the equation A=(1/2)bh
Replace b with 7
Replace h with 12
A=(1/2)(7)(12)
A=(1/2)(84)
A=42
You can set up a proportion to solve for the percentage of the coins that are pennies. Of course, there are alternate methods as well, but this is one method. First, you define the percentage of the coins that are pennies to be equal to a variable, such as x. Next, you write 240/600 = x/100, due to how "x" is the amount out of 100 (since per cent is for every cent (out of 100)), and 240 would correspond to x while 600 would correspond to 100. This proportion may also be written as 100/x = 600/240, or 240/x = 600/100. In order to solve for x, you use cross-products, or you multiply each denominator by the numerator of the other fraction. You will be left with a numerical value that's equal to a number times x, and then you divide both sides of the equation by the coefficient of x in order to isolate x. As a result, you will have the percentage of the coins that are pennies to be your answer. Remember to write the units for every numerator and denominator in your proportion.