Given:
BD is parallel to XY.
One of the angle is 85°
To find:
The value of y.
Solution:
Parallel lines BD and XY cut by a transversal line.
Angle y and 85° are alternate interior angles.
Alternate interior angle theorem:
If two parallel lines are cut by a transversal line, then the pairs of alternate interior angles are congruent.
⇒ y = 85°
The value of y is 85.
Answer:

Step-by-step explanation:
According to Rolle's Theorem, if f(a) = f(b) in an interval [a, b], then there must exist at least one <em>c</em> within (a, b) such that f'(c) = 0.
We are given that g(5) = g(8) = -9. Then according to Rolle's Theorem, there must be a <em>c</em> in (5, 8) such that g'(c) = 0.
So, differentiate the function. We can take the derivative of both sides with respect to <em>x: </em>
<em />
<em />
Differentiate:

Let g'(x) = 0:

Solve for <em>x</em>. First, divide everything by negative seven:

Factor:
<h3>

</h3>
Zero Product Property:

Solve for each case. Hence:

Since the first solution is not within our interval, we can ignore it.
Therefore:

Answer:
true
Step-by-step explanation: