Answer: The outer loop should carry a current of 2.0 A.
The current should flow in the counter-clockwise direction
Explanation: Please see the attachments below
To calculate for the pressure of the system, we need an equation that would relate the
number of moles (n), pressure (P), and temperature (T) with volume (V). There are a number of equations that would relate these values however most are very complex equations. For
simplification, we assume the gas is an ideal gas. So, we use PV = nRT.<span>
PV = nRT where R is the universal gas
constant
P = nRT / V</span>
<span>P = 3.40 mol ( 0.08205 L-atm / mol-K ) (251 + 273.15 K) / 1.75 L </span>
<span>P = 83.56 atm</span>
<span>
</span>
<span>Therefore, the pressure of the gas at the given conditions of volume and temperature would be 83.56.</span>
Answer:
(a) Fₓ = 0 N
= 9.08 N
(b)
(a) Fₓ = 0 N
<u></u>
= 9.08 N
(c)
= 0 N
Fₓ = 9.08 N
Explanation:
The magnitude of the force will remain the same in each case, which is given as follows:
F = ma (Newton's Second Law)
where,
F = force = ?
m = mass = 4.54 kg
a = acceleration = 2 m/s²
Therefore,
F = (4.54 kg)(2 m/s²)
F = 9.08 N
Now, we come to each scenario:
(a)
Since the motion is in the vertical direction. Therefore the magnitude of the force in x-direction will be zero:
<u>Fₓ = 0 N</u>
For upward direction the force will be positive:
<u></u>
<u> = 9.08 N</u>
<u></u>
(b)
Since the motion is in the vertical direction. Therefore the magnitude of the force in x-direction will be zero:
<u>Fₓ = 0 N</u>
For upward direction the force will be negative:
<u></u>
<u> = - 9.08 N</u>
<u></u>
(c)
Since the motion is in the horizontal direction. Therefore the magnitude of the force in y-direction will be zero:
<u></u>
<u> = 0 N</u>
<u>Fₓ = 9.08 N</u>
Answer:
1.2 s
Explanation:
The period of a pendulum is the time it takes to complete one cycle, as in move and return to its initial state, for example going from one side to the other and coming back. If this pendulum goes from one side to the other in 0.6 s, it will take it the doble of that time to perform a cycle, and that is the period
T = 2 * 0.6 s = 1.2 s
Answer:
Explanation:
Dear Student, this question is incomplete, and to attempt this question, we have attached the complete copy of the question in the image below. Please, Kindly refer to it when going through the solution to the question.
To objective is to find the:
(i) required heat exchanger area.
(ii) flow rate to be maintained in the evaporator.
Given that:
water temperature = 300 K
At a reasonable depth, the water is cold and its temperature = 280 K
The power output W = 2 MW
Efficiency
= 3%
where;



However, from the evaporator, the heat transfer Q can be determined by using the formula:
Q = UA(L MTD)
where;

Also;




LMTD = 4.97
Thus, the required heat exchanger area A is calculated by using the formula:

where;
U = overall heat coefficient given as 1200 W/m².K

The mass flow rate:
