Answer:
A = π(P)
I can't give a numeral answer because neither P nor A is defined.
<h3>
Answer:</h3>
- 6 large prints
- 12 small prints
<h3>
Step-by-step explanation:</h3>
<em>Numerical Reasoning</em>
Consider a set of prints that consists of 2 small prints and one large print (that is, twice as many small prints as large). The value of that set will be ...
... 2×$20 +45 = $85
To have revenue of at least $510, the studio must sell ...
... $510/$85 = 6
sets of prints. That is, the studio needs to sell at least 6 large prints and 12 small ones.
_____
<em>With an equation</em>
Let x represent the number of large prints the studio needs to sell. Then 2x will represent the number of small prints. Total sales will be ...
... 20·2x +45·x ≥ 510
... 85x ≥ 510
... x ≥ 510/85
... x ≥ 6
The studio needs to sell at least 6 large prints and 12 small prints.
7x-8 (2) = 12x+8
14x-16 = 12x+8
-12x -12x
2x-16 = 8
+16 +16
2x = 24
÷2 ÷2
x= 12
UV= 7x-8
UV= 7(12)-8
UV= 84-8
UV= 76
Answer:
∠1 is 33°
∠2 is 57°
∠3 is 57°
∠4 is 33°
Step-by-step explanation:
First off, we already know that ∠2 is 57° because of alternate interior angles.
Second, it's important to know that rhombus' diagonals bisect each other; meaning they form 90° angles in the intersection. Another cool thing is that the diagonals bisect the existing angles in the rhombus. Therefore, 57° is just half of something.
Then, you basically just do some other pain-in-the-butt things after.
Since that ∠2 is just the bisected half from one existing angle, that means that ∠3 is just the other half; meaning that ∠3 is 57°, as well.
Next is to just find the missing angle ∠1. Since we already know ∠3 is 57°, we can just add that to the 90° that the diagonals formed at the intersection.
57° + 90° = 147°
180° - 147° = 33°
∠1 is 33°
Finally, since that ∠4 is just an alternate interior angle of ∠1, ∠4 is 33°, too.