1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
34kurt
3 years ago
12

-2(7-y)+4=-4 HELP PLEASE

Mathematics
2 answers:
artcher [175]3 years ago
5 0

Answer:

y=7

Step-by-step explanation:

1)distribute the -2

2)you should the have a new equation -14+2y+4=4

3) combine like terms then you should have -10+2y=4

4)add 10 to both sides new equation should be 2y=14

5)divide be 2 and you should get y=7

inn [45]3 years ago
5 0
I believe it is 7 not sure tho
You might be interested in
Help please explain how you got the answer
pychu [463]

Answer: V≈900 ft³

Step-by-step explanation:

Formula

V=πr²h

Given

r=5 ft

h=12 ft

Solve

V=πr²h

V=π(5)²(12)

V=π(25)(12)

V=300π

V≈300(3)

V≈900 ft³

Hope this helps!! :)

Please let me know if you have any questions

5 0
3 years ago
Just a friendly reminder
agasfer [191]

Answer:

What was this for ?

Step-by-step explanation:

4 0
3 years ago
Someone please help me answer this
Brrunno [24]
B= 30
a2+b2=c2
72^2+b^2 = 78^2
5184+b^2 = 6084
b2 = 900
b = 30
8 0
2 years ago
Read 2 more answers
⚠️⚠️⚠️⚠️⚠️ 15 points
Helga [31]

Answer:

The answer is (4x-1)·(3x+2)

Step-by-step explanation:

3 0
3 years ago
interpret r(t) as the position of a moving object at time t. Find the curvature of the path and determine thetangential and norm
Igoryamba

Answer:

The curvature is \kappa=1

The tangential component of acceleration is a_{\boldsymbol{T}}=0

The normal component of acceleration is a_{\boldsymbol{N}}=1 (2)^2=4

Step-by-step explanation:

To find the curvature of the path we are going to use this formula:

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}

where

\boldsymbol{T}} is the unit tangent vector.

\frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| is the speed of the object

We need to find \boldsymbol{r}'(t), we know that \boldsymbol{r}(t)=cos \:2t \:\boldsymbol{i}+sin \:2t \:\boldsymbol{j}+ \:\boldsymbol{k} so

\boldsymbol{r}'(t)=\frac{d}{dt}\left(cos\left(2t\right)\right)\:\boldsymbol{i}+\frac{d}{dt}\left(sin\left(2t\right)\right)\:\boldsymbol{j}+\frac{d}{dt}\left(1)\right\:\boldsymbol{k}\\\boldsymbol{r}'(t)=-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}

Next , we find the magnitude of derivative of the position vector

|| \boldsymbol{r}'(t)}||=\sqrt{(-2\sin \left(2t\right))^2+(2\cos \left(2t\right))^2} \\|| \boldsymbol{r}'(t)}||=\sqrt{2^2\sin ^2\left(2t\right)+2^2\cos ^2\left(2t\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4\left(\sin ^2\left(2t\right)+\cos ^2\left(2t\right)\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4}\sqrt{\sin ^2\left(2t\right)+\cos ^2\left(2t\right)}\\\\\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1\\\\|| \boldsymbol{r}'(t)}||=2\sqrt{1}=2

The unit tangent vector is defined by

\boldsymbol{T}}=\frac{\boldsymbol{r}'(t)}{||\boldsymbol{r}'(t)||}

\boldsymbol{T}}=\frac{-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}}{2} =\sin \left(2t\right)+\cos \left(2t\right)

We need to find the derivative of unit tangent vector

\boldsymbol{T}'=\frac{d}{dt}(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j}) \\\boldsymbol{T}'=-2\cdot(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j})

And the magnitude of the derivative of unit tangent vector is

||\boldsymbol{T}'||=2\sqrt{\cos ^2\left(x\right)+\sin ^2\left(x\right)} =2

The curvature is

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}=\frac{2}{2} =1

The tangential component of acceleration is given by the formula

a_{\boldsymbol{T}}=\frac{d^2s}{dt^2}

We know that \frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| and ||\boldsymbol{r}'(t)}||=2

\frac{d}{dt}\left(2\right)\: = 0 so

a_{\boldsymbol{T}}=0

The normal component of acceleration is given by the formula

a_{\boldsymbol{N}}=\kappa (\frac{ds}{dt})^2

We know that \kappa=1 and \frac{ds}{dt}=2 so

a_{\boldsymbol{N}}=1 (2)^2=4

3 0
3 years ago
Other questions:
  • I'm not even sure where to start.
    10·2 answers
  • Log 10,000 = ?<br><br><br>This is such a stupid question, sorry lol
    12·2 answers
  • Answer before 1:00 i will mark you brainliest
    15·1 answer
  • Write the set of real numbers between 110 and 220 in interval notation.
    12·2 answers
  • I don’t understand how do you do this I have a assignment for tommorow some one help
    12·2 answers
  • Geometry help!!<br><br> I need help on #13, find the values of the variables:
    10·2 answers
  • I need help to find the slope between these two points
    13·1 answer
  • What does g3/10 represent?
    15·1 answer
  • I neeeeed heeeeeeeeelllllp? (Averaged of change from a graph)
    9·1 answer
  • Guys pls help me ASAP​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!