Carbon needs four more valence electrons, or a total of eight valence electrons, to fill its outer energy level.
First, the sun shines liquid (ocean) Next, the water evaporates
The standard addition equation is as followsI_(S+X) (V/V_O )=I_X+I_X/[X]_i [S]_4 (V_S/V_0 ) Here, [X]_i is the initial concentration of analyte, [S]_i is the initial concentration of standard, I_X is signal for analyte, I_(S+X) is signal for standard and analyte, V_0 is the initial volume, V_S is the added standard volume, and V is the total volume.Added volume of standard V_S is-23.3 mL. Initial volume of the sample V_0 is 10.00 mL. Initial concentration of standard ([S]_i) is 0.156 ng/mL.[X]_i= -[S]_i (V_S/V_0 )〖[X]〗_(i )= -(0.156 ng/mL)((-23.3 mL)/(10.00 mL))=0.363 ng/mL
Concentration of U(III) in ground sample is 0.363 ng/mL
Answer:
The order of reaction is 2.
Rate constant is 0.0328 (M s)⁻¹
Explanation:
The rate of a reaction is inversely proportional to the time taken for the reaction.
As we are decreasing the concentration of the reactant the half life is increasing.
a) For zero order reaction: the half life is directly proportional to initial concentration of reactant
b) for first order reaction: the half life is independent of the initial concentration.
c) higher order reaction: The relation between half life and rate of reaction is:
Rate = ![\frac{1}{k[A_{0}]^{(n-1)}}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bk%5BA_%7B0%7D%5D%5E%7B%28n-1%29%7D%7D)
Half life =![K\frac{1}{[A_{0}]^{(n-1)} }](https://tex.z-dn.net/?f=K%5Cfrac%7B1%7D%7B%5BA_%7B0%7D%5D%5E%7B%28n-1%29%7D%20%7D)
![\frac{(halflife_{1})}{(halflife_{2})}=\frac{[A_{2}]^{(n-1)}}{[A_{1}]^{(n-1)} }](https://tex.z-dn.net/?f=%5Cfrac%7B%28halflife_%7B1%7D%29%7D%7B%28halflife_%7B2%7D%29%7D%3D%5Cfrac%7B%5BA_%7B2%7D%5D%5E%7B%28n-1%29%7D%7D%7B%5BA_%7B1%7D%5D%5E%7B%28n-1%29%7D%20%7D)
where n = order of reaction
Putting values
![\frac{109}{231}=\frac{[0.132]^{(n-1)}}{[0.280]^{(n-1)}}](https://tex.z-dn.net/?f=%5Cfrac%7B109%7D%7B231%7D%3D%5Cfrac%7B%5B0.132%5D%5E%7B%28n-1%29%7D%7D%7B%5B0.280%5D%5E%7B%28n-1%29%7D%7D)

Hence n = 2
![halflife=\frac{1}{k[A_{0}]}](https://tex.z-dn.net/?f=halflife%3D%5Cfrac%7B1%7D%7Bk%5BA_%7B0%7D%5D%7D)
Putting values

K = 0.0328