1.1214 mL will a 0.205-mole sample of He occupy at 3.00 atm and 200 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Using equation PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 3.00 atm
V= ?
n=0.205 mole
R= 
T=200 K
Putting value in the given equation:


V= 1.1214 mL
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
Answer:
NaCl will only conduct electricity in solutions
Explanation:
For electrical conduction, free mobile electrons as seen in most metals must be present or ions which are charged particles must be available for solutions and molten substances.
- Sodium chloride is an ionic compound without free mobile electrons or ions despite being ionic.
- It will maintain a subtle and unique charge stability when in solid form.
- In solid, the ions are not free to move and remain locked up in the solid mass.
- When introduced into a solution, the ions becomes free to move and this will aid electrical conduction.
Answer:
true
Explanation:
Because Mercury can be solidified when its temparature us brought to its freezing point. However, when returned to room temparature conditions, mercury does not exist in solid state for long, and returns back to its more common liquid form.
Noice but I don’t get why was this necessary