From the stoichiometry of the balanced reaction equation, the correct statement are;
- For every 1 molecule of methane CH4 that reacts, 2 molecules of H2O are produced.
- For every 20 grams of methane (CH4) that reacts, 40 grams of H2O are produced.
- For every 200 moles of methane (CH4) that reacts, 400 moles of H2O are produced.
<h3>What is combustion?</h3>
The term combustion refers to the burning of fossil fuels for the purpose of energy production. The equation for reaction is CH4 + 2O2 ---> CO2 + 2H2O.
Using this equation as shown, the true statements are;
- For every 1 molecule of methane CH4 that reacts, 2 molecules of H2O are produced.
- For every 20 grams of methane (CH4) that reacts, 40 grams of H2O are produced.
- For every 200 moles of methane (CH4) that reacts, 400 moles of H2O are produced.
Learn more about combustion: brainly.com/question/15117038
A carbon iota can bond with four other iotas and is just like the four-hole wheel, whereas an oxygen iota, which can bond only to two, is just like the two-hole wheel.
Answer:
37.8 L OF CARBON MONOXIDE IS REQUIRED TO PRODUCE 18.9 L OF NITROGEN.
Explanation:
Equation for the reaction:
2 CO + 2 NO ------> N2 + 2 CO2
2 moles of carbon monoxide reacts with 2 moles of NO to form 1 mole of nitrogen
At standard temperature and pressure, 1 mole of a gas contains 22.4 dm3 volume.
So therefore, we can say:
2 * 22.4 L of CO produces 22.4 L of N2
44.8 L of CO produces 22.4 L of N2
Since, 18.9 L of Nitrogen is produced, the volume of CO needed is:
44.8 L of CO = 22.4 L of N
x L = 18.9 L
x L = 18.9 * 44.8 / 22.4
x L = 18.9 * 2
x = 37.8 L
The volume of Carbon monoxide required to produce 18.9 L of N2 is 37.8 L
Answer:
There are 3 significant figures on this one.