Electric potential = work done/charge of electron = 2.18×10⁻¹⁸/1.6×10⁻¹⁹
= 13.625 V
Answer:
In a coiled spring, the particles of the medium vibrate to and fro about their mean positions at an angle of
A. 0° to the direction of propagation of wave
Explanation:
The waveform of a coiled spring is a longitudinal wave, which is made up of vibrations of the spring which are in the same direction as the direction of the wave's advancement
As the coiled spring experiences a compression force and is then released, it experiences a sequential movement of the wave of the compression that extends the length of the coiled spring which is then followed by a stretched section of the coiled spring in a repeatedly such that the direction of vibration of particles of the coiled is parallel to direction of motion of the wave
From which we have that the angle between the direction of vibration of the particles of the coiled spring and the direction of propagation of the wave is 0°.
In physics, power is defined as energy per unit time. You will also hear it described as work per unit time. The standard unit of measure for power is the watt, where a watt is defined as joules (energy) per second (time). This is expressed as a fraction as J/s. If you wanted to increase the power in any operation, you can either increase the energy (more joules) or reduce the time (fewer seconds).
Kinetic energy = mass time squared speed divided by 2
W=mv^2/2 = 50*10*10/2 = 2500 J