Equation of an ellipse:
(x-h)²/a² + (y-k)²/b² = 1
Since it passes through the origin (0,0) , then h = k = 0 hence the equation:
(x-0)²/a² + (y-0)²/b² = 1
x²/a² + y²/b² = 1
2a = major axis = 2.|5| + |-5| = 10. then a = 5 and a² = 25
2b = minor axis = 2.|3| + |-3| = 6. then b = 3 and b² = 9
Then the final equation is:
x²/25 + y²/9 = 1
The length of the circle's radius = 744.92 cm
Given the length of arc of a circle, arc length = 269π cm
Central angle of a circle is the angle made between the radius through the arc length at the center of the circle.
The corresponding central angle = 65°
To find the corresponding central angle in radians = 65° x π/180 = 13π/36 radians
We have, arc length of a circle = radius x central angle
Therefore, radius of the circle = arc length / central angle
= 269π /(13π/36)
= 744.92 cm
Learn more about arc length of a circle at brainly.com/question/28108430
#SPJ4
<h3><u>Given</u><u>:</u><u>-</u></h3>
- Perimeter of parallelogram = 66 ft
<h3><u>To</u><u> </u><u>find</u><u> </u><u>out</u><u>:</u><u>-</u></h3>
Find the longest side of a parallelogram.
<h3><u>Formula</u><u> </u><u>used</u><u>:</u><u>-</u></h3>
Perimeter of parallelogram = 2 ( a + b )
<h3>
<u>Solution:-</u><u> </u></h3>
We know that,
Perimeter of parallelogram = 2 ( a + b )
★ Substituting the values in the above formula,we get:
⇒ 66 = 2 ( 3x + 1 + 2x - 3 )
⇒ 66 = 2 ( 5x - 2 )
⇒ 66/2 = 5x - 2
⇒ 33 = 5x - 2
⇒ 5x - 2 = 33
⇒ 5x = 33 + 2
⇒ 5x = 35
⇒ x = 35/5
⇒ x = 7 ft
Now,
One side,a = 3x + 1
★ Putting the value of x
⇒ 3 × 7 + 1
⇒ 21 + 1
⇒ 22 ft
Other side,b = 2x - 3
★ Putting the value of x
⇒ 2 × 7 - 3
⇒ 14 - 3
⇒ 11 ft
Hence,the longest Side of given parallelogram is 22 ft ( 3x + 1 ) .
Answer:426.6
Step-by-step explanation:
.138 x =.088(x - 69.7) + .394(69.7)
.138 x - .088x = 69.7(.394 - .088)
.05x = 21.3282
/
x = 426.564
This rounds to x = 426.6
<h2><u>Give me brainliest</u></h2>
Hey!
----------------------------------------------------------------
We Know:
m∠AED = 34°
m∠EAD = 112°
----------------------------------------------------------------
Solution:
You notice 4 small triangles in both triangles. That shows that both triangles are the same.
The angles are the same for m∠BDC and m∠AED.
The angles are the same for m∠ADB and m∠EAD
----------------------------------------------------------------
Angles:
m∠BDC = 34°
m∠ADB = 112°
----------------------------------------------------------------
Congruent Angles:
m∠AED ≡ m∠BDC
m∠EAD ≡ m∠ADB
----------------------------------------------------------------
Hope This Helped! Good Luck!