1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fenix001 [56]
3 years ago
5

Shawntell is training for a relay race. She ran 2000 feet every day for 6 days.

Mathematics
1 answer:
Elena-2011 [213]3 years ago
5 0

Answer:

12,000

Step-by-step explanation:

2000*6 is 12000

Hope this helps plz hit the crown :D

You might be interested in
Can y’all<br> Help me with 7 10 11 12
Art [367]
#7. C #10. C #11. A #12. C
6 0
3 years ago
What is the distance in units between (−11, −20) and (−11, 5)
Morgarella [4.7K]
Distance = √(x₂-x₁)² + (y₂-y₁)²
d = √(-11-(-11)) + (5-(-20))²
d = √0² + 25²
d = √625
d = 25

In short, Your Answer would be 25 units

Hope this helps!
6 0
3 years ago
Read 2 more answers
Let z denote a random variable that has a standard normal distribution. Determine each of the probabilities below. (Round all an
Gelneren [198K]

Answer:

(a) P (<em>Z</em> < 2.36) = 0.9909                    (b) P (<em>Z</em> > 2.36) = 0.0091

(c) P (<em>Z</em> < -1.22) = 0.1112                      (d) P (1.13 < <em>Z</em> > 3.35)  = 0.1288

(e) P (-0.77< <em>Z</em> > -0.55)  = 0.0705       (f) P (<em>Z</em> > 3) = 0.0014

(g) P (<em>Z</em> > -3.28) = 0.9995                   (h) P (<em>Z</em> < 4.98) = 0.9999.

Step-by-step explanation:

Let us consider a random variable, X \sim N (\mu, \sigma^{2}), then Z=\frac{X-\mu}{\sigma}, is a standard normal variate with mean, E (<em>Z</em>) = 0 and Var (<em>Z</em>) = 1. That is, Z \sim N (0, 1).

In statistics, a standardized score is the number of standard deviations an observation or data point is above the mean.  The <em>z</em>-scores are standardized scores.

The distribution of these <em>z</em>-scores is known as the standard normal distribution.

(a)

Compute the value of P (<em>Z</em> < 2.36) as follows:

P (<em>Z</em> < 2.36) = 0.99086

                   ≈ 0.9909

Thus, the value of P (<em>Z</em> < 2.36) is 0.9909.

(b)

Compute the value of P (<em>Z</em> > 2.36) as follows:

P (<em>Z</em> > 2.36) = 1 - P (<em>Z</em> < 2.36)

                   = 1 - 0.99086

                   = 0.00914

                   ≈ 0.0091

Thus, the value of P (<em>Z</em> > 2.36) is 0.0091.

(c)

Compute the value of P (<em>Z</em> < -1.22) as follows:

P (<em>Z</em> < -1.22) = 0.11123

                   ≈ 0.1112

Thus, the value of P (<em>Z</em> < -1.22) is 0.1112.

(d)

Compute the value of P (1.13 < <em>Z</em> > 3.35) as follows:

P (1.13 < <em>Z</em> > 3.35) = P (<em>Z</em> < 3.35) - P (<em>Z</em> < 1.13)

                            = 0.99960 - 0.87076

                            = 0.12884

                            ≈ 0.1288

Thus, the value of P (1.13 < <em>Z</em> > 3.35)  is 0.1288.

(e)

Compute the value of P (-0.77< <em>Z</em> > -0.55) as follows:

P (-0.77< <em>Z</em> > -0.55) = P (<em>Z</em> < -0.55) - P (<em>Z</em> < -0.77)

                                = 0.29116 - 0.22065

                                = 0.07051

                                ≈ 0.0705

Thus, the value of P (-0.77< <em>Z</em> > -0.55)  is 0.0705.

(f)

Compute the value of P (<em>Z</em> > 3) as follows:

P (<em>Z</em> > 3) = 1 - P (<em>Z</em> < 3)

             = 1 - 0.99865

             = 0.00135

             ≈ 0.0014

Thus, the value of P (<em>Z</em> > 3) is 0.0014.

(g)

Compute the value of P (<em>Z</em> > -3.28) as follows:

P (<em>Z</em> > -3.28) = P (<em>Z</em> < 3.28)

                    = 0.99948

                    ≈ 0.9995

Thus, the value of P (<em>Z</em> > -3.28) is 0.9995.

(h)

Compute the value of P (<em>Z</em> < 4.98) as follows:

P (<em>Z</em> < 4.98) = 0.99999

                   ≈ 0.9999

Thus, the value of P (<em>Z</em> < 4.98) is 0.9999.

**Use the <em>z</em>-table for the probabilities.

3 0
3 years ago
A student athlete run 3 1/3 miles in 30 minutes A professional runner can run 1 1/4 times as far in 30 minutes . how far can the
IrinaK [193]
The professional runner can run 4 1/6 miles in 30 minutes.

Since the professional can run 1 1/4 times as far in 30 minutes, we multiply 3 1/3 by 1 1/4:

(3 1/3)(1 1/4)

Convert each to an improper fraction (multiply the whole number by the denominator and add the numerator):
10/3(5/4) = 50/12 = 25/6 = 4 1/6.
4 0
3 years ago
(x-3) (x2+2x+1)<br> Foil method
AveGali [126]

Step-by-step explanation:

(x-3)(x^2+2x+1)

=x^3-3x^2+2x^2-6x+x-3

=x^3+2x^2-3x^2-6x+x-3

=x^3-x^2-5x-3

___________

8 0
3 years ago
Other questions:
  • translate into an equation and solve. what percent of 64 is 16? (do not round until the final answer. then round to two decimal
    7·1 answer
  • Which expression is not a polynomial? <br> A. 3x + 5<br> B. 2/5x - 21<br> C. 5<br> D. x^-3 + 5x
    6·1 answer
  • Consider a 25 factorial design. (a) How many factors and levels are considered in this factorial experiment
    15·1 answer
  • How do you write 9.58 as a mixed number
    14·2 answers
  • Draw a picture of a figure that has more than 3 lines of symmetry. Draw the lines of symmetry
    13·1 answer
  • If two parallel lines are cut by a transversal, then alternate exterior angles are
    14·2 answers
  • Help pleaseeeeeee!!!!!!
    8·1 answer
  • ILL BRAINLIEST YOU IF YOU PLEASE HELP ME
    12·1 answer
  • Brainliest and show work on how to do all 3
    6·2 answers
  • Why does 1.5 x 4.2 equal 6.3? Someone answer please
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!