The answer is D. Products are formed from reactants by the breaking and forming of new bonds.
Answer:
b
Explanation:
Given:
- The ball is fired at a upward initial speed v_yi = 2*v
- The ball in first experiment was fired at upward initial speed v_yi = v
- The ball in first experiment was as at position behind cart = x_1
Find:
How far behind the cart will the ball land, compared to the distance in the original experiment?
Solution:
- Assuming the ball fired follows a projectile path. We will calculate the time it takes for the ball to reach maximum height y. Using first equation of motion:
v_yf = v_yi + a*t
Where, a = -9.81 m/s^2 acceleration due to gravity
v_y,f = 0 m/s max height for both cases:
For experiment 1 case:
0 = v - 9.81*t_1
t_1 = v / 9.81
For experiment 2 case:
0 = 2*v - 9.81*t_2
t_2 = 2*v / 9.81
The total time for the journey is twice that of t for both cases:
For experiment 1 case:
T_1 = 2*t_1
T_1 = 2*v / 9.81
For experiment 2 case:
T_2 = 2*t_2
T_2 = 4*v / 9.81
- Now use 2nd equation of motion in horizontal direction for both cases:
x = v_xi*T
For experiment 1 case:
x_1 = v_x1*T_1
x_1 = v_x1*2*v / 9.81
For experiment 2 case:
x_2 = v_x2*T_2
x_2 = v_x2*4*v / 9.81
- Now the x component of the velocity for each case depends on the horizontal speed of the cart just before launching the ball. Using conservation of momentum we see that both v_x2 = v_x1 after launch. Since the masses of both ball and cart remains the same.
- Hence; take ratio of two distances x_1 and x_2:
x_2 / x_2 = v_x2*4*v / 9.81 * 9.81 / v_x1*2*v
Simplify:
x_1 / x_2 = 2
- Hence, the amount of distance traveled behind the cart in experiment 2 would be twice that of that in experiment 1.
Answer:
4N to the left. No it is not balanced.
Explanation:
8 -4 = 4 N of force
Balanced would be if they equaled zero, so 8 to the left and 8 to the right
Answer:
Action and reaction forces don't cancel each other out because they act on separate objects. ... Action and reaction forces are always equal in magnitude, so it's not possible to exert more force on an object than it can exert back.
Explanation:
The length by which the spring got stretched will be 0.08 m. The force is directly propotional to the distance by which the spring stretched.
<h3>What is spring force?</h3>
The force required to extend or compress a spring by some distance scales linearly with respect to that distance is known as the spring force. Its formula is
F = kx
The given data in the problem is;
F is the spring force =200
K is the spring constant= 2500 N/m
x is the length by which spring got stretched =?
The stretch of the spring is found as;

Hence the length by which the spring got stretched will be 0.08 m.
To learn more about the spring force refer to the link;
brainly.com/question/4291098
#SPJ4