1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juliette [100K]
3 years ago
8

Two particles are 15 meters apart. Particle A has a charge of 6.0 • 10-4 C, and particle B has a charge of 5.0 • 10-4 C. The res

ulting Coulomb force is 12 N. At the same distance, what combination of charges would yield the same Coulomb force?
Physics
1 answer:
deff fn [24]3 years ago
7 0

Answer:

The combinations are

1. 2\times 10^{-4} C , 15\times 10^{-4}

2. 3\times 10^{-4} C , 10\times 10^{-4}

Explanation:

The force between two charges q and Q is given by Coulomb's law.

The coulomb force is given by

F = \frac{1}{4\prod \varepsilon _{0}}\times \frac{Q\times q}{r^{2}}

Where, r be the distance between two charges

According to the question,

r = 15 cm, Q = 6\times 10^{-4} C, q = 5\times 10^{-4} C , F = 12 N

Force remains same, distance remains same

so the product of Q and q be same

The product of Q and q is 30\times 10^{-8}

So other combination of charges are

1. 2\times 10^{-4} C , 15\times 10^{-4}

2. 3\times 10^{-4} C , 10\times 10^{-4}

You might be interested in
A generator produces 38 mwmw of power and sends it to town at an rms voltage of 78 kvkv. part a what is the rms current in the t
4vir4ik [10]

The rms current in the transmission lines is I = 487.18 A.

The root-imply-rectangular (rms) voltage of a sinusoidal supply of electromotive force  is used to represent the source. it is the rectangular root of the time average of the voltage squared.

Alternating-present day circuits. the root-imply-square (rms) voltage of a sinusoidal source of electromotive force is used to symbolize the supply. it's far the square root of the time average of the voltage squared.

Electric power is  by using present day or the waft of electric fee and voltage or the capacity of rate to deliver electricity. A given cost of power can be produced by using any combination of contemporary and voltage values

power = 38 M watt

rms voltage = 78 K v

power = IV

I = power/V

I = (38 * 1000000)/78*1000

I = 487.18 A.

Learn more about rms current here:-brainly.com/question/20913680

#SPJ4

7 0
2 years ago
The total energy of a block—spring system is 0.18 J. The amplitude is 14.0 cm and the maximum speed is 1.25 m/s. Find: (a) the m
algol13

a) The mass is 0.23 kg

b) The spring constant is 1.25 N/m

c) The frequency is 1.42 Hz

d) The speed of the block is 1.08 m/s

Explanation:

a)

We can find the mass of the block by applying the law of conservation of energy: in fact, the total mechanical energy of the system (which is sum of elastic potential energy, PE, and kinetic energy, KE) is constant:

E=PE+KE=const.

The potential energy is given by

PE=\frac{1}{2}kx^2

where k is the spring constant and x is the displacement. When the block is crossing the position of equilibrium, x = 0, so all the energy is kinetic energy:

E=KE_{max}=\frac{1}{2}mv_{max}^2 (1)

where

m is the mass of the block

v_{max}=1.25 m/s is the maximum speed

We also know that the total energy is

E=0.18 J

Re-arranging eq.(1), we can find the mass:

m=\frac{2E}{v_{max}^2}=\frac{2(0.18)}{(1.25)^2}=0.23 kg

b)

The maximum speed in a spring-mass system is also given by

v_{max} =\sqrt{\frac{k}{m}} A

where

k is the spring constant

m is the mass

A is the amplitude

Here we have:

v_{max}=1.25 m/s is the maximum speed

m = 0.23 kg is the mass

A = 14.0 cm = 0.14 m is the amplitude

Solving for k, we find the spring constant

k=\frac{v_{max}^2}{A^2}m=\frac{1.25^2}{0.14^2}(0.23)=18.3 N/m

c)

The frequency in a spring-mass system is given by

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k is the spring constant

m is the mass

In this problem, we have:

k = 18.3 N/m is the spring constant (found in part b)

m = 0.23 kg is the mass (found in part a)

Substituting and solving for f, we find the frequency of the system:

f=\frac{1}{2\pi}\sqrt{\frac{18.3}{0.23}}=1.42 Hz

d)

We can solve this part by using the law of conservation of energy; in fact, we have

E=PE+KE=\frac{1}{2}kx^2 + \frac{1}{2}mv^2

Where v is the speed of the system when the displacement is equal to x.

We know that the total energy of the system is

E = 0.18 J

Also we know that

k = 18.3 N/m is the spring constant

m = 0.23 kg is the mass

Substituting

x = 7.00 cm = 0.07 m

We can solve the equation to find the corresponding speed v:

v=\sqrt{\frac{2E-kx^2}{m}}=\sqrt{\frac{2(0.18)-(18.3)(0.07)^2}{0.23}}=1.08 m/s

#LearnwithBrainly

3 0
2 years ago
While on a moving elevator during a certain perfod or time, Frank's apparent weight is 620 N. If Frank's mass is 70 kg, what is
MakcuM [25]

Answer:

0.94 m/s^2 downwards

Explanation:

m = 70 kg, m g = 70 x 9.8 = 686 N

R = 620 N

Let the acceleration be a, as the apparent weight decreases so the elevator is moving downwards with an acceleration a.

mg - R = ma

686 - 620 = 70 x a

a = 0.94 m/s^2

7 0
3 years ago
The density of a material in CGS system of units is 4g cm-³. In a system of units in which unit of length is 10 cm and unit of m
butalik [34]

\sf\underline{Solution:}

Here , the density of the material is 4g cm³ but it is not given in CGS system.

$\sf{As\:we\:know\:that:}$

$\sf\bold{Density=}$ $\sf\dfrac{Mass}{Volume}$

$\space$

\sf{Now,according \: to \:the\:question:}

$\sf\small{Density\:of\:the\:material=4}$ $\sf\dfrac{g}{cm^2}$

$\space$

$\sf{It\:is\:given\:that:}$

In the system of units the mass is 100gram.

$\space$

Hence,

$\sf{The\:mass\:unit\:for\:4g=}$ $\sf\dfrac{4}{100}$ $\sf{units}$

$\space$

In the system of units,the length is 10cm.

Henceforth,

$\sf\small{The\:length \:for\:1cm\:units=}$ $\sf\dfrac{1}{10}$ $\sf{units}$

$\space$

<u>☆</u><u> </u><u>Substitute</u><u> </u><u>the</u><u> </u><u>required</u><u> </u><u>values</u><u> </u><u>in</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>formula</u><u>-</u>

$\sf\purple{Density=}$ $\sf\dfrac\purple{Mass}\purple{volume}$

$\space$

$\sf\underline\bold{Density\:of\:the\:material:}$

= $\sf\dfrac{4/100}{1/10^3}$ $\sf\bold{units}$

$\space$

= $\sf\dfrac{4/100}{1/1000}$ $\sf\bold{units}$

$\space$

= $\sf\dfrac{4000}{100}$ $\sf\bold{units}$

$\space$

$\sf\underline\bold\blue{=40\:units}$

$\sf\small{Therefore,option\:2nd\:is\:correct!}$

_______________________________

6 0
2 years ago
A 97.6-kg baseball player slides into second base. The coefficient of kinetic friction between the player and the ground is μk =
Mila [183]

Answer:

v=6.65m/sec

Explanation:

From the Question we are told that:

Mass m=97.6

Coefficient of kinetic friction  \mu k=0.555

Generally the equation for Frictional force is mathematically given by

 F=\mu mg

 F=0.555*97.6*9.8

 F=531.388N

Generally the  Newton's equation for Acceleration due to Friction force is mathematically given by

 a_f=-\mu g

 a_f=-0.555 *9.81

 a_f=-54455m/sec^2

Therefore

 v=u-at

 v=0+5.45*1.22

 v=6.65m/sec

4 0
3 years ago
Other questions:
  • 1. Suppose that you have a mass of 45.7 kg and are standing on frictionless roller skates. Someone then throws you a 2.50 kg mas
    5·1 answer
  • What happens when the temperature of a substance decreases significantly?
    9·2 answers
  • A 94 g particle undergoes SHM with an amplitude of 8.3 mm, a maximum acceleration of magnitude 7.8 x 103 m/s2, and an unknown ph
    11·1 answer
  • Mention the importance of writing the number in scientific notation​
    11·1 answer
  • How does heat reach to us from the sun<br><br><br>​
    15·1 answer
  • When driving at slower speeds you need to use what type of steering
    6·1 answer
  • Which of the following are true about electrons? a.) They are positively charged b.) They are negatively charged c.) They are fo
    13·2 answers
  • What is the difference between human caused Climate Change and natural<br> climate cycles?
    6·1 answer
  • HELP ME PLEASE!!!!!! A couch is pushed with a force of 79 N and moves a distance of 7 m across the floor. How much work was done
    15·1 answer
  • Sheila weighs 60 kg and is riding a bike. Her momentum on the bike is 340 kg • m/s. The bike hits a rock, which stops it complet
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!