Answer:
0.25 m
Explanation:
We can solve the problem by using the lens equation:

where
f is the focal length
p is the distance of the object from the lens
q is the distance of the image from the lens
In this problem, we have
f = +20 cm=+0.20 m (the focal length is positive for a converging lens)
q = +1.0 m (the image distance is positive for a real image)
Solving the equation for p, we find

"Ionization energy" is the one among the following choices given in the question that <span>decreases with increasing atomic number in Group 2A. The correct option among all the options that are given in the question is the third option or option "C". I hope that the answer has helped you.</span>
The cyclist accelerates from 0 m/s to 9 m/s in 3 seconds with an acceleration of 3 m/s².
Answer:
Explanation:
Acceleration exerted by an object is the measure of change in speed or velocity of that object with respect to time. So the initial and final velocities play a major role in determining the acceleration of the cyclist. As here the initial velocity of the cyclist is the speed at rest and that is given as 0 m/s. Then after 3 seconds, the velocity of the cyclist changes to 9 m/s.
Then acceleration = change in velocity/Time.

Acceleration = (9-0)/3=9/3=3 m/s².
So the cyclist accelerates from 0 m/s to 9 m/s in 3 seconds with an acceleration of 3 m/s².
Mem me e m even have. Jags. Shah. Shiv side esicjm is n meh dish so do indbbd