Use the formula stated below

So
#H_3PO_4

#Ba(OH)_2

Hence H_3PO_4 is the limiting reagent
Answer:
12.044 X 10^23 molecules of NaOH
Explanation:
because NaOH is an ionic bond, we should be asking how many <em>formula units </em> are in 2 moles of NaOH, there are 0 molecules since NaOH is measured in formula units.
but for the sake of the problem I'll assume NaOH is measured in molecules
for every mol of something there are 6.022 X 10^23 of something of that something.
so there are 6.022 X 10^23 molecules for every mol of NaOH
that means we have 2 X 6.022 X 10^23 molecules in 2 moles of NaOH = 12.044 X 10^23 molecules of NaOH
Answer:
Increases by 100 Pa
Explanation:
According to The Ideal Gas Equation,
- the temperature of the gas is directly proportional to the volume of the gas present in it
- If the temperature rises from 100 K to 200 K, then the volume will increase by 100 Pa (standard unit of Pressure)
Answer:

Explanation:
I am assuming you are saying what is the final volume of the gas
Known :
Initial volume (V1) = V
Initial temperature (T1) = T
Final temperature (T2) = 5/4 T
Initial pressure (P1) = P
Final pressure (P2) = 2P
<u>Wanted: Final volume (V2)</u>
<u />
<u />
The solution would be like
this for this specific problem:
<span><span>
E</span>=</span><span>mc</span>ΔT<span> <span>
= (</span>15<span> g</span><span>)(</span>1.91<span> <span>J<span><span>g∘</span>C</span></span>)(</span>25<span><span> ∘</span>C</span>−15<span><span> ∘</span>C</span><span>)
</span></span>= 28.65 * 10
= 286.5
<span>
I hope this helps and if you have any further questions, please don’t hesitate
to ask again. </span>