Answer:
A: Shift to the left
Explanation:
The reaction would try to use up the added heat by making more H 2 and Cl 2.
Answer: The final volume
is 263.09 ml
Explanation:
To calculate the final volume of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

Thus final volume
is 263.09 ml
Answer:
Explanation:
wouldn't it be three because every capital is a new element?
When Ag₂S dissolves, it dissociates as follows;
Ag₂S ---> 2Ag⁺ + S²⁻
First we need to calculate molar solubility which gives the number of moles dissolved in 1 L of solution.
If molar solubility of Ag₂S is y, then molar solubility of Ag²⁺ and S²⁻ is 2y and y respectively.
ksp gives the solubility constant
ksp = [Ag⁺]²[S²⁻]
ksp = [2y]²[y]
4y³ = 8.00 x 10⁻⁵¹
y³ = 2 x 10⁻⁵¹
y = 1.26 x 10⁻¹⁷ mol/L
molar mass = 247.8 g/mol
solubility of Ag₂S = 1.26 x 10⁻¹⁷ mol/L x 247.8 g/mol = 3.12 x 10⁻¹⁵ g/L
Solubility of Ag₂S = 3.12 x 10⁻¹⁵ g/L
You can solve this by using the equation (P1V1/T1) = (P2V2/T2). Plug in 0.50 atm for P1, leave V1 as the unknown, and plug in 325 K as T1. Then substitute 1.2 atm for P2, 48 L for V2, and 320 K for T2. Solve for V1, which is 117L, but since you round using two sig figs, your answer is C, 120 L. Hope this helps!