Answer:
3.18 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 0.985 atm
- Initial volume (V₁): 3.65 L
- Final pressure (P₂): 861.0 mmHg
Step 2: Convert P₁ to mmHg
We will use the conversion factor 1 atm = 760 mmHg.
0.985 atm × 760 mmHg/1 atm = 749 mmHg
Step 3: Calculate the final volume of the gas
Assuming ideal behavior and constant temperature, we can calculate the final volume using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 749 mmHg × 3.65 L/861.0 mmHg = 3.18 L
Answer:
The answer is
<h2>3.68 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula
<h3>

</h3>
From the question
mass of substance = 12.50 g
volume = 3.4 mL
The density of the substance is

We have the final answer as
<h3>3.68 g/mL</h3>
Hope this helps you
I believe the statement above is true. <span>A </span>carbohydrate<span> is a </span>biological molecule<span> consisting of </span>carbon<span> (C), </span>hydrogen<span> (H) and </span>oxygen<span> (O) atoms, usually with a hydrogen–oxygen </span>atom ratio of 2:1. <span>When a </span>carbohydrate<span> is broken into its component sugar molecules by </span>hydrolysis<span> (e.g. sucrose being broken down into glucose and fructose), this is termed saccharification.</span>
Answer:
the speed of the earth's rotation, the tilt of the earth's axis and the directness of the sun